

National Aeronautics and Space Administration

# **BLADE LOSS TRANSIENT DYNAMICS ANALYSIS**

VOLUME III USER'S MANUAL FOR TETRA PROGRAM

Prepared By:

G.R. Black

A.F. Storace F. Sagendorph

V.C. Gallardo, Principal Investigator

Approved By: M.J. Stallone, Technical Program Manager

J.A. McKenzie, Program Manager

GENERAL ELECTRIC COMPANY Aircraft Engine Business Group Cincinnati, OH 45215

June 1981

Prepared For

# National Aeronautics and Space Administrat

(NASA-CR-165373-Vol-3) BLADE LOSS TRANSIENT DYNAMICS ANALYSIS. VOLUME 3: USER'S MANUAL FOR TETRA PROGRAM Final Report (General Electric Co.) 239 p HC A11/MF A01 CSCL 21E

N81-27091

Unclas

NASA Lewis Research Center Contract NAS3-22053

NATIONAL TECHNICAL INFORMATION SERVICE
U.S. DEPARTMENT OF COMMERCE SPRINGFIELD, VA. 22161

#### NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

## TABLE OF CONTENTS

| Section |                                                | Page               |
|---------|------------------------------------------------|--------------------|
| 1.0     | INTRODUCTION                                   | 1                  |
| 2.0     | DESCRIPTION OF TETRA                           | 3                  |
|         | 2.1 Overall Program Structure                  | 10                 |
| 3.0     | MODULAR ELEMENT MODELING                       | 54                 |
| 4.0     | INPUT AND OUTPUT FILES FOR TETRA               | 82                 |
| 5.0     | INPUT SHEETS                                   | 86                 |
| 6.0     | NASTRAN/TETRA INTERFACE: MODAL INPUT GENERATOR | 139                |
|         | 6.1 NASTRAN 17.5 Generated Modal Data File     | 141                |
| 7.0     | DEMONSTRATOR CASES                             | 144                |
|         | 7.1 Input and Output 7.2 Computed Results      | 146<br><b>2</b> 09 |

## LIST OF ILLUSTRATIONS

| Figure |                                                                              | Page |
|--------|------------------------------------------------------------------------------|------|
| 1.     | Typical Subsystem and Physical Component Representation of an Engine System. | 4    |
| 2.     | TETRA Routines for Transformations and Numerical Integration.                | 6    |
| 3.     | Modal Subsystems.                                                            | . 8  |
| 4.     | Modal Degrees of Freedom.                                                    | 9    |
| 5.     | TETRA Subprograms.                                                           | 11   |
| 6.     | TETRA Program.                                                               | 12   |
| 7.     | TETRA Flow Chart.                                                            | 14   |
| 8.     | Flow Chart of Main Routine.                                                  | 18   |
| 9.     | Flow Chart for Function IROUND.                                              | 20   |
| 10.    | Flow Chart for Subroutine INIT.                                              | 21   |
| 11.    | Flow Chart of Subroutine SUBSYS.                                             | 22   |
| 12.    | Flow Chart of Subroutine FLEX.                                               | 24   |
| 13.    | Flow Chart of Subroutine RBODY.                                              | 25   |
| 14.    | Flow Chart for Subroutine CONEL.                                             | 26   |
| 15.    | Flow Chart of Subroutine ELEM1.                                              | 27   |
| 16.    | Flow Chart of Subroutine ELEM2.                                              | 28   |
| 17.    | Flow Chart of Subroutine ELEM3.                                              | 29   |
| 18.    | Flow Chart of Subroutine ELEM4.                                              | 30   |
| 19.    | Flow Chart for Subroutine ELEM5.                                             | 33   |
| 20.    | Subroutine STIFFT.                                                           | 34   |
| 21.    | Subroutine ATIFFT.                                                           | 35   |
| 22.    | Flow Chart of Subroutine INVERT.                                             | 36   |
| 23.    | Flow Chart of Subroutine MATM.                                               | 37   |
| 24.    | Flow Chart of Subroutine UBAL.                                               | 38   |
| 25.    | Flow Chart of Subroutine SINCOS,                                             | 39   |
| 26.    | Flow Chart of Subroutine FORHIS.                                             | 40   |
| 27.    | Flow Chart of Subroutine GYROE.                                              | 41   |
| 28.    | Flow Chart of Subroutine PLOTD.                                              | 42   |
| 29.    | Flow Chart of Subroutine SCAN.                                               | 43   |
| 30.    | Flow Chart for Subroutine TILOOP.                                            | 44   |

#### LIST OF ILLUSTRATIONS (Continued)

| Figure |                                                                                                                                       | Page |
|--------|---------------------------------------------------------------------------------------------------------------------------------------|------|
| 31.    | Flow Chart for Subroutine ROPROP.                                                                                                     | 45   |
| 32.    | Flow Chart of Subroutine CURRT.                                                                                                       | 46   |
| 33.    | Flow Chart of Subroutine FMODES.                                                                                                      | 47   |
| 34.    | Flow Chart of Subroutine FORCE.                                                                                                       | 48   |
| 35.    | Flow Chart of Subroutine APFOR.                                                                                                       | 50   |
| 36.    | Flow Chart of Subroutine GEN.                                                                                                         | 51   |
| 37.    | Flow Chart of Subroutine MODES.                                                                                                       | 52   |
| 38.    | Flow Chart of Subroutine LISTPF.                                                                                                      | 53   |
| 39.    | Engine Rotor Subsystem Normal Modes in Two Orthogonal Planes.                                                                         | 55   |
| 40.    | Typical Mounting Arrangement and Coordinate System.                                                                                   | 56   |
| 41.    | Modal Planes.                                                                                                                         | 60   |
| 42.    | General Spring-Damper Element (Typical Physical Connecting Element).                                                                  | 62   |
| 43.    | Space Link-Damper Element (Type 2 Physical Connecting Element).                                                                       | 64   |
| 44.    | Rub Force Model to Represent the Nonlinear Tip Rub<br>Mechanism that Includes the Dead Band Interval<br>Prior to Closure.             | 66   |
| 45.    | Rub element (Type 3 Physical Connecting Element).                                                                                     | 69   |
| 46.    | An Example of an Aircraft Engine Mounting Arrangement.                                                                                | 70   |
| 47.    | Engine Frame/Case Ovalization Effects Increase the Effective Flexibility at the Mounting Planes.                                      | 72   |
| 48.    | Combined Engine Support-Link Element (Type 4 Physical Connecting Element).                                                            | 73   |
| 49.    | Case Flexibility Represented by Multipoint/Direction Physical Spring Element (Which Defines a Portion of the Engine Support Element). | 74   |
| 50.    | Combined In-Plane and Out-of Plane Stiffness Matrix for the Physical Spring Element Shown in Figure 12.                               | 76   |
| 51.    | Uncoupled Point Spring-Damper Element (Type 5 Physical Connecting Element).                                                           | 78   |
| 52.    | Gyro Element - Gyro Forces are Computed with a Velocity-Dependent Element.                                                            | 81   |
| 53.    | Modal Subsystem Summary.                                                                                                              | 91   |

## LIST OF ILLUSTRATIONS (Continued)

| Figure |                                                                                                                                                          | Page |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 54.    | 40 DOF Finite Element Modal for Demonstrator.                                                                                                            | 145  |
| 55.    | Demonstrator Model - $100^{\circ}$ g-in. Sudden Unbalance at the Fan at 12,000 rpm.                                                                      | 210  |
| 56.    | Demonstrator Model - $100 \text{ g-in.}$ Sudden Unbalance at the Fan at $12,000 \text{ rpm.}$                                                            | 211  |
| 57.    | Total System - Rotor Mode Shapes.                                                                                                                        | 212  |
| 58.    | Demonstrator Model - $100 \text{ g-in.}$ Sudden Unbalance at the Fan at $9908 \text{ rpm.}$                                                              | 213  |
| 59.    | Fan Response in Two Planes for NASA Demonstrator Model with Gyro 100 g-in. Sudden Fan Unbalance at 3000 rpm.                                             | 214  |
| 60.    | Orbit Plots at the Fan for NASA Demonstrator Model with Gyro 100 g-in. Sudden Fan Unbalance at 3000 rpm.                                                 | 215  |
| 61.    | Response in the Vertical Direction at the Case and Fan Rotor for the NASA Demonstrator Model for 5000 g-in. Sudden Fan Unbalance at 3000 rpm (No Rub).   | 217  |
| 62.    | Response in the Vertical Direction at the Case and Fan Rotor for the NASA Demonstrator Model for 5000 g-in. Sudden Fan Unbalance at 3000 rpm (With Rub). | 218  |
| 63.    | Rotor and Case Orbit Plot for the NASA Demonstrator Model for 5000 g-in. Sudden Fan Unbalance at 3000 rpm (No Rub).                                      | 219  |
| 64.    | Rotor and Case Orbit Plot for the NASA Demonstrator Model for 5000 g-in. Sudden Fan Unbalance at 3000 rpm (With Rub).                                    | 220  |
| 65.    | Response in the Vertical Direction at the Case and Fan Rotor for the NASA Demonstrator Model for 5000 g-in. Sudden Fan Unbalance at 3624 rpm (No Rub).   | 221  |
| 66.    | Response in the Vertical Direction at the Case and Fan Rotor for the NASA Demonstrator Model for 5000 g-in. Sudden Fan Unbalance at 3624 rpm (With Rub). | 222  |
| 67.    | NASA Demonstrator - Steady State Frequency Response, 100 g-in. Fan (No Gyro).                                                                            | 223  |
| 68.    | NASA Demonstrator - Steady-State Frequency Response, 100 g-in. Fan (No Gyro).                                                                            | 224  |
| 69.    | NASA Demonstrator - Steady-State Frequency Response, 100 g-in. Fan (Gyro at Fan and Turbine).                                                            | 225  |

## LIST OF ILLUSTRATIONS (Concluded)

| Figure |                                                                                                                                                                                                                                                                                     | Page |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 70.    | NASA Demonstrator - Steady-State Frequency Response, 100 g-in. Fan (Gyro at Fan and Turbine).                                                                                                                                                                                       | 226  |
| 71.    | Response in the Vertical Direction of the Case and Fan Rotor for the NASA Demonstrator Model for 1000 to 3000 rpm Accel Segment. Radial Displacement Dead Band Exceeds the Fan-Case Relative Displacement (No Rub).                                                                 | 227  |
| 72.    | Response in the Vertical Direction at the Case and Fan Rotor for the NASA Demonstrator Model for 3000 to 5000 rpm Accel Segment. Radial Displacement Dead Band Exceeds the Fan-Case Relative Displacement (No Rub).                                                                 | 228  |
| 73.    | Response in the Vertical Direction at the Case and Fan Rotor for NASA Demonstrator Model for 1000 to 3000 rpm Accel Segment. 10 mil Radial Displacement Dead Band and $1 \times 10^6$ lb/in. Rub Spring at the Fan Rotor-Case (With Rub).                                           | 229  |
| 74.    | Response in the Vertical Direction at the Case and Fan Rotor for the NASA Demonstrator Model for 3000 to 5000 rpm Accel Segment. 10 mil Radial Displacement Dead Band and 1 x $10^6$ lb/in. Rub Spring at the Fan Rotor-Case (With Rub).                                            | 230  |
| 75.    | Force Exerted by the Forward Frame/Bearing (Spring 3) on the Rotor at Point 5 in the Vertical Direction for the NASA Demonstrator Model for 3000 to 5000 rpm Accel Segment. Radial Displacement Dead Band Exceeds the Fan Rotor-Case Relative Displacement (No Rub).                | 231  |
| 76.    | Force Exerted by the Forward Frame/Bearing (Spring 3) on the Rotor at Point 5 in the Vertical Direction for the NASA Demonstrator Model for 3000 to 5000 rpm Accel Segment. 10 mil Radial Displacement Dead Band and 1 x $10^6$ lb/in. Rub Spring at the Fan Rotor Case (With Rub). | 232  |
|        | (with Kub).                                                                                                                                                                                                                                                                         | 434  |

#### 1.0 INTRODUCTION

The use of any new and unfamiliar tool is often accompanied by errors from misunderstanding or simply from lack of experience. The TETRA program is no exception. However, care has been taken to minimize these problems in the use of TETRA as a computational tool for engine dynamics.

Based on the modal synthesis approach, the component element method employed in TETRA follows a modular or building block scheme both in the construction of the mathematical model of an engine to be analyzed and in the architecture of the program structure, subroutines and nomenclature. It cannot be overemphasized the importance in keeping this idea of modular construction in mind while preparing the schematic of the engine model and the inputs for TETRA.

The turbine engine is described by a reduced system of second order differential equations and a solution for the transient response is obtained through an explicit numerical integration scheme - the central finite difference method. Global stiffness and damping matrices are not assembled and only the right hand side of the system of equations, i.e., the forces, is updated at each time step. The differential equations are formulated in terms of generalized coordinates and model elastic and rigid body elements and elements that represent physical connections. In the former case, the elements are obtained through the coordinate transformations that are associated with the free-free modes and partially constrained modes computed for engine subsystem structures (rotors, case, pylon). In the latter case, the elements describe the physical connections between the subsystem structures. These connections can be nonlinear and are defined with bearing/frame springs and dampers, engine support elements, link elements, rotor-case rub springs or stop elements, and gyroscopic cross-axis coupling elements. The rotor-case rub springs are used to model the additional load path between the rotor and the case that exists for the large rotor excursions caused by high rotor unbalance. For this element, the effect of the force dead band associated with the structural clearance is included in the formulation for the effective restoring forces.

One should begin with a schematic of the structure to be analyzed; this would probably have had its normal modes and frequencies calculated. Using a unified coordinate axis, one would identify the various structural subsystems into which the whole structure could be broken down, to be followed by establishing the connecting elements, their locations, subsystems joined and their mechanical characteristics (spring rates, damping). The normal modes of each structural subsystem may then be calculated in a program such as GE's VAST or finite element programs with eigenvalue capability such as SAP4, NASTRAN, etc. From these modal calculations, one chooses the modes and number of modes to represent each subsystem, and then generate the modal input file.

Next, the engine operating conditions such as speed, amount and location of unbalance, time interval or external excitation are chosen. Finally, the joints where loads and displacements are to be printed out are defined.

The assembly of the entire engine is made by the sequence and type of inputs and the NAMELIST input provides ease and flexibility in input preparation. Following the input instructions closely and in the sequence in which these are presented in this manual, will minimize the errors and any confusion in using this new program.

#### 2.0 DESCRIPTION OF TETRA

The transient dynamic analysis method used in the TETRA (Turbine Engine Transient Response Analysis) program is based on a component element approach. The component elements consist of elastic and rigid body elements described by generalized coordinates obtained by coordinate transformations, and physical connecting elements that model bearing/frame springs and dampers, rotor-case rub springs and gyroscopic cross-axis coupling effects.

The generalized coordinates are based on the free-free modes and partially constrained modes associated with engine subsystem structures (rotor, casing, pylon). The method extends the conventional modal analysis procedure to account for physical damping and symmetric stiffness terms, and rotor-case rubs including the effects of the force deadband associated with the structural clearance.

An efficient numerical time integration scheme - the central finite difference method - is used to obtain the solution through an explicity step-bystep calculation.

For each generalized coordinate, a differential equation is formed which relates the current generalized accelerations to the current generalized forces as follows:

$$m_i\ddot{q}_i = Q_i, i: 1, 2, 3, 4, \dots$$
 (1)

q; are the current generalized accelerations

Q; are the current generalized forces

m; are the generalized masses

Figure 1 shows a schematic of a subsystem and physical component element definition for an engine system. The nonlinearities can be treated with the physical connecting elements, and the subsystem natural modes are used to define regions of the engine system which are expected to remain linear. As



Figure 1. Typical Subsystem and Physical Component Representation of an Engine System.

long as the nonlinearities are not severe enough to induce operating regimes where the original modes are totally unrepresentative, then the use of the natural modes is effective.

The major TETRA subroutines where the transformations and the numerical integration of the generalized differential equations is performed are identified in Figure 2.

The task of establishing the current total generalized forces  $Q_i$  acting on each of the generalized coordinates  $q_i$  is accomplished in the subroutine GEN. The current physical displacements and velocities, needed to establish the physical coupling forces used by GEN in the formation of the generalized forces, are determined in subroutine CURRT which transforms the modal displacements  $q_i$  into real space at each time step. It will be noted that in computing the generalized forces from the physical displacements and velocities, that a transformation from real space to generalized space is performed by subroutine GEN for each time step. The generalized forces also include the effects of applied physical forces which are not displacement or velocity dependent, such as unbalance forces. The generalized forces and the generalized masses are utilized in subroutine TILOOP to compute the generalized accelerations using equation\*(6), and to compute the future values of the generalized displacements using the central finite difference method as shown in equation\*(9).

<sup>\*</sup>These equations are given as labeled in Section 3.0 Volume II of the "Blade Loss Turbine Engine Dynamic Analysis Program."



Figure 2. TETRA Routines for Transformations and Numerical Integration.

The modal subsystem numbers, types, and the regions they represent are identified in Figure 3. The number of directions (physical degrees of freedom) and the direction numbers associated with these degrees of freedom are listed in Figure 4.

Eleven triple subscripted arrays are used to store the subsystem mode shape data.

- $S_i$  (I, J, K) = Mode shape modal displacements for the i-th modal subsystem.
- i = 1, 2, 3, ...., 11 (see Figure 3)
- I identifies the generalized coordinate
- J identifies the location or point on the mode shape
- K identifies the direction (see Figure 4)

The  $S_i$  array data are used to define the coupling ratios,  $B_i$ , r, d needed to perform the transformations between real and generalized space. The coupling ratio  $B_i$ , r, d is the deflection at point r in the direction d for a unit value of the i-th generalized coordinate.

The physical displacement and velocity data for the current time step are stored in the arrays X(I, J) and VEL(I, J), respectively.

- I = The point number
- J = The direction number (direction numbers 1 6)

The generalized coordinate values are stored in the array Z(I, J).

- Z(I, J) = Present and previous values for the generalized coordinates
- I = Generalized coordinate number
- J = 1 for current time (0), 2 for one previous time step (-1), 3 for two
  previous time steps (-2).

The generalized masses, stiffnesses and damping coefficients for the governing differential equations are stored in the arrays ZM, ZK, and ZC.

- ZM(I) = Generalized masses
- ZK(I) = Generalized stiffnesses
- ZC(I) = Generalized damping coefficients

Figure 3. Modal Subsystems.

| NO. | SUBSYSTEM                      | TYPE              |
|-----|--------------------------------|-------------------|
| 1   | VERTICAL PLANE ROTOR-1 MODEL   | FLEXIBLE-PLANAR   |
| 2   | HORIZONTAL PLANE ROTOR-1 MODEL | FLEXIBLE-PLANAR   |
| 3   | 3D RIGID BODY ROTOR-1 MODEL    | RIGID WITH 5DOF   |
| 4   | VERTICAL PLANE ROTOR-2 MODEL   | FLEXIBLE-PLANAR   |
| 5   | HORIZONTAL PLANE ROTOR-2 MODEL | * FLEXIBLE-PLANAR |
| 6   | 3D RIGID BODY ROTOR-2 MODEL    | RIGID WITH 5DOF   |
| 7   | VERTICAL PLANE CASE MODEL      | FLEXIBLE-PLANAR   |
| 8   | HORIZONTAL PLANE CASE MODEL .  | FLEXIBLE-PLANAR   |
| 9.  | 3D RIGID BODY CASE MODEL       | RIGID WITH 6 DOF  |
| 10  | . TORSIONAL CASE MODEL         | FLEXIBLE-TWIST    |
| 11  | 3D FLEXIBLE PYLON (WING) MODEL | FLEXIBLE-3D       |

| SURSYSTEM MODEL |                                    | DIRECTIONS |                               |                             |
|-----------------|------------------------------------|------------|-------------------------------|-----------------------------|
| SUBSYSTEM       | <u>DESCRIPTION</u>                 | NUMBER     | Global<br><u>DIR. NUMBERS</u> |                             |
| 1 .             | ROTOR-1 VERT. PLANE<br>FLEX. MODEL | 2          | K=1<br>K=2                    |                             |
| 2               | ROTOR-1 HOR. PLANE<br>FLEX. MODEL  | 2          | K=3<br>K=4                    |                             |
| 3               | ROTOR-1 RIGID BODY MODEL           | 5          | K=1<br>K=2                    |                             |
|                 | FIODEL                             |            | K=3<br>K=4                    | z(1)                        |
| 4               | ROTOR-2 VERT. PLANE                | 2          | K=5<br>K=1                    | θ <sub>z</sub> (4)          |
|                 | FLEX. MODEL                        |            | K=2                           | ł                           |
| 5               | ROTOR-2 HOR. PLANE<br>FLEX. MODEL  | 2          | K=3<br>K=4                    | θ <sup>X</sup> (θ).         |
| 6               | ROTOR-2 RIGID BODY<br>MODEL        | 5          | K=3                           | θ <sub>γ</sub> (2)          |
|                 |                                    |            | K=4<br>K=5                    | Global Coordinate<br>System |
| .7              | CASE VERT. PLANE<br>FLEX. MODEL    | 2          | K=1<br>K=2                    |                             |
| 8               | CASE HOR. PLANE<br>FLEX. MODEL     | 2          | K=3<br>K=4                    | :                           |
| 9               | CASE RIGID BODY MODEL              | 6          | K=1<br>K=2                    | K=4<br>K=5                  |
| 10              | CASE-TORSIONAL FLEX. MODEL         | 1          | K=3<br>K=6                    | <u>K=6</u>                  |
| 11              | PYLON-3D FLEX. MODEL               | 3          | K=1<br>K=3                    | K=5                         |

Figure 4. Modal Degrees of Freedom.

The physical coupling forces used in the formation of the generalized forces are computed by multiplying the physical displacements and velocities into the connecting element stiffness and damping matrices, respectively and then adding the results. The current values for the physical connecting element data are stored in the arrays AKE; and ADE;.

- $AKE_{i}(I,J,K)$  = Stiffness array for the i-th physical connecting element type.
- $ADE_{i}(I,J,K)$  = Damping array for the i-th physical connecting element type.
- I Identifies the physical connecting element number.
- J Identifies the row number associated with a force for a given point and direction.
- K Identifies the column number associated with a displacement for a given point and direction.

The information needed to identify the locations of the AKE and ADE array elements is provided in the following arrays.

- ICOMPJ (I) = Number of points for element I.

- ICOMPN (I,J,K) = The direction numbers for element I associated with the J-th point and the K-th direction.

#### 2.1 OVERALL PROGRAM STRUCTURE: DESCRIPTION OF TETRA AND FLOW CHARTS

The TETRA program consists of a main routine, a function subprogram, and twenty-nine subroutines. A brief description of the function subprogram and each of the twenty-nine subroutines is given in Figure 5. Figure 6 shows

IROUND Function subprogram which rounds off floating point numbers INIT Initializes variables and arrays **SYBSYS** Processes data for the modal subsystems FLEX Finds flexible subsystem mode shapes RBODY Computes rigid body mode shapes CONEL Processes data for the physical connecting elements ELEM1 Processes spring-damper (type 1) physical connecting element data ELEM2 Processes link-damper (type 2) physical connecting element data ELEM3 Processes rub (type 3) physical connecting element data ELEM4 Processes engine support-links (type 4) physical connecting element data ELEM5 Processes data for the uncoupled point spring-damper (type 5) physical connecting elements STIFFE Computes stiffness matrix for engine support element STIFFT Computes stiffness matrix for link elements that are to be combined with engine support element INVERT Matrix inversion and determinant calculation for engine supportlinks (type 4) physical connecting element MATM engine support-links (type 4) physical Matrix multiplication connecting element UBAL Processes unbalance load data Processes Pcos wt and Psin wt load data SINCOS FORHIS Processes force-time history load data GYROE Processes gyroscopic load data PLOTD Processes data for output plot file SCAN Establishes element/subsystem connections TILOOP Time integration loop ROPROP Calculates rotor properties (speed, acceleration, and angular displacement) CURRT Computes current physical displacements, velocities, and modal forces **FMODES** Provides modal displacements and modal forces FORCE Computes physical connecting element and gyro element forces APFOR Computer applied forces GEN Computes generalized forces MODES Computes modal displacements LISTPF Prints at least a partial listing of the output plot file

Figure 5. TETRA Subprograms.

Figure 6. TETRA Program.

STIFFE

STIFFT

INVERT

MATM

the hierarchy of the program, and a flow chart of the overall program is given in Figure 7. Flow charts of the main routine, function subprogram, and all the subroutines are given in Figures 8 through 38.

In general, left to right order in Figure 6 is the order in which the subroutines are executed. First, subroutine INIT, which initializes various program arrays and variables is executed. Then comes the subroutine SUBSYS, which processes data for each of the modal subsystems in turn. If a particular subsystem is a rigid body subsystem (subsystem 3, 6, or 9), subroutine RBODY is called by subroutine SUBSYS to calculate the rigid body mode shapes. If the subsystem is not a rigid body subsystem (subsystem 1, 2, 4, 5, 7, 8, 10, or 11), however, subroutine FLEX is called to find the mode shapes.

Next, subroutine CONEL is called, which processes data for each of the physical connecting elements in turn. For each physical connecting element, subroutine ELEM1, ELEM2, ELEM3, ELEM4, or ELEM5 will be called from subroutine CONEL depending whether the physical connecting element type is 1, 2, 3, 4, or 5, respectively. For type 4 physical connecting elements, subroutines STIFFE, STIFFT, INVERT, and MATM are also called from subroutine ELEM4.

The next subroutines executed are UBAL, SINCOS, FORHIS, GYROE, PLOTD, and SCAN (in that order). Subroutine SCAN is the last subroutine called prior to when the time integration is performed. The purpose of the subroutines mentioned thus far is, in general, to process data in preparation for the time integration. The program progresses very rapidly through subroutine SCAN, since the previously mentioned subroutines are executed only once or a small number of times.

Subroutine TILOOP, which consists of the time integration loop, comes next. For each time step the subroutines ROPROP, CURRT, FORCE, APFOR, and GEN are called by subroutine TILOOP. In addition, subroutine FMODES gets called many times by subroutine CURRT and subroutines MODES gets called many times by subroutine GEN. Nearly all of the process time for the program is used by TILOOP and the associated subroutines (unless there are only a very few time steps).

Finally, after the time integration is completed, subroutine LISTPF is called, which lists out part or all of the output plot file.



Figure 7. TETRA Flow Chart.



Figure 7. TETRA Flow Chart (Continued).



Figure 7. TETRA Flow Chart (Continued).



Figure 7. TETRA Flow Chart (Concluded).



Figure 8. Flow Chart of Main Routine.



Figure 8. Flow Chart of Main Routine (Concluded).



Figure 9. Flow Chart for Function IROUND.



Figure 10. Flow Chart for Subroutine INIT.



Figure 11. Flow Chart of Subroutine SUBSYS.



Figure 11. Flow Chart of Subroutine SUBSYS (Concluded).



Figure 12. Flow Chart of Subroutine FLEX.



Figure 13. Flow Chart of Subroutine RBODY.



Figure 14. Flow Chart for Subroutine CONEL.



Figure 15. Flow Chart of Subroutine ELEM1.



Figure 16. Flow Chart of Subroutine ELEM2.



Figure 17. Flow Chart of Subroutine ELEM3.



Figure 18. Flow Chart of Subroutine ELEM4.



Figure 18. Flow Chart of Subroutine ELEM4 (Continued).



Figure 18. Flow Chart of Subroutine ELEM4 (Concluded).



Figure 19. Flow Chart for Subroutine ELEM5.



Figure 20. Subroutine STIFFE.



Figure 21. Subroutine STIFFT.



Figure 22. Flow Chart of Subroutine INVERT.



Figure 23. Flow Chart of Subroutine MATM.



Figure 24. Flow Chart of Subroutine UBAL.



Figure 25. Flow Chart of Subroutine SINCOS.



Figure 26. Flow Chart of Subroutine FORHIS.



Figure 27. Flow Chart of Subroutine GYROE.



Figure 28. Flow Chart of Subroutine PLOTD.



Figure 29. Flow Chart of Subroutine SCAN.



Figure 30. Flow Chart for Subroutine TILOOP.



Figure 31. Flow Chart for Subroutine ROPROP.



Figure 32. Flow Chart of Subroutine CURRT.



Figure 33. Flow Chart of Subroutine FMODES.



Figure 34. Flow Chart of Subroutine FORCE.



Figure 34. Flow Chart of Subroutine FORCE (Concluded).



Figure 35. Flow Chart of Subroutine APFOR.



Figure 36. Flow Chart of Subroutine GEN.



Figure 37. Flow Chart of Subroutine MODES.



Figure 38. Flow Chart of Subroutine LISTPF.

### 3.0 MODULAR ELEMENT MODELING

Modal representations obtained by transforming the degrees-of-freedom from real space to modal space are used to define the structural dynamic properties of the subsystems. The real space formulations for the subsystems are based on beam-like finite element (discrete mass and stiffness) subsystem models of the engine rotor(s) and case and a three-dimensional finite element model of the pylon, all described with respect to a ground fixed coordinate system. Figure 39 shows typical subsystem normal modes and coupling ratios for a rotor finite element model. The flexual vibration characteristics of equivalent nonrotating shaft(s) are used to define the rotor(s). The whirl phenomenon is addressed by using Euler's law for angular motions to establish cross-axis coupling forces that are dependent on angular velocities in two planes and proportional to the polar inertia; these forces are applied as external forces to the modal coordinates that represent the rotor in two planes.

The free-free undamped modes in both the vertical and horizontal planes for the rotor(s) and the case are derived from planar finite element models. In addition, a single dimension (single degree-of-freedom at each station) torsional model is also used to model the case. The rigid body modes for the rotor(s) and case in the vertical and horizontal directions can be defined either with the "soft spring" rigid body modes or can be defined with separate modal subsystems representing computed rigid body modes based on the mass properties and the geometry. The torsional direction rigid body modes for the case are represented either with the "soft spring" rigid body modes or with a rigid body modal subsystem. It will be noted that the case torsional direction is important for modeling the engine mounting system load paths. The fore-and-aft motions are represented with rigid body modal subsystems for both the rotor(s) and the case. The pylon finite element model is used to define a set of three-dimensional cantilevered modes. Figure 40 shows the global coordinate system, direction numbers, and a typical engine mounting arrangement. Table I identifies the physical degree-of-freedom associated with each subsystem. Relative to defining the the rigid body mode shapes for separate rigid body subsystems, it will be noted that in general an



Figure 39. Engine Rotor Subsystem Normal Modes in Two Orthogonal Planes.



Figure 40. Typical Mounting Arrangement and Coordinate System.

Table I. Physical Global Degree-of-Freedom and Direction Numbers for the Subsystems.

|                                     | GLOBAL DEGREES-OF-FREEDOM |    |   |                |   |    |  |
|-------------------------------------|---------------------------|----|---|----------------|---|----|--|
| SUBSYSTEMS                          | Z                         | Θγ | Y | Θ <sub>Z</sub> | Х | Θχ |  |
| 3003131213                          | 1                         | 2  | 3 | 4              | 5 | 6  |  |
| VERTICAL PLANE FLEXIBLE ROTOR (S)   | •                         | •  |   |                |   |    |  |
| HORIZONTAL PLANE FLEXIBLE ROTOR (S) |                           |    | • | •              |   |    |  |
| RIGID BODY ROTOR (S)                | •                         | •  | • | •              | • |    |  |
| VERTICAL PLANE FLEXIBLE CASE        | •                         | •  |   |                |   |    |  |
| HORIZONTAL PLANE FLEXIBLE CASE      |                           |    | • | •              |   |    |  |
| RIGID BODY CASE -                   | •                         | •  | • | •              | • | •  |  |
| TORSIONAL FLEXIBLE CASE             |                           |    |   |                |   | •  |  |
| 3D FLEXIBLE PYLON                   | •                         |    | • |                | • |    |  |



unconstrained rigid body is free to move in space in six directions. Such "rigid body" motion corresponds, in rectilinear coordinates, to translations in X, Y, Z and rotations in  $\theta_X$ ,  $\theta_y$ , and  $\theta_Z$ . The equations describing these motions are as follows:

Applied Physical Forces Inertia Matrix Physical Accelerations of the C.G.

$$\begin{bmatrix}
F_{X} \\
F_{y} \\
F_{z} \\
M_{x} \\
M_{y} \\
M_{z}
\end{bmatrix}
=
\begin{bmatrix}
m & 0 & 0 & 0 & 0 & 0 \\
0 & m & 0 & 0 & 0 & 0 \\
0 & 0 & m & 0 & 0 & 0 \\
0 & 0 & 0 & I_{x} & 0 & 0 \\
0 & 0 & 0 & 0 & I_{y} & 0 \\
0 & 0 & 0 & 0 & 0 & I_{z}
\end{bmatrix}$$

$$\begin{bmatrix}
\ddot{X} \\
\ddot{Y} \\
\ddot{z} \\
T_{x} \\
\ddot{y} \ddot{y} \\
\ddot{y} \ddot{y} \\
\ddot{y} \ddot{y}$$

These equations are included in the set defined by equation (1). In this special case,  $m_i$  corresponds to the physical mass properties  $m_i$ ,  $I_x$ ,  $I_y$ , or  $I_z$ ,  $q_i$  corresponds to the physical coordinates X, Y, Z,  $\theta_X$ ,  $\theta_Y$ , or  $\theta_Z$  of the C.G., and the  $k_i$  terms are equal to zero. Note that for a general (nonprincipal) set of axes, the inertia matrix of equation (17) would include off-diagonal terms. For a three dimensional body where the planes of symmetry pass through the center of mass there is not inertia coupling and the inertia matrix corresponds to that of equation (17). The eigenvectors for the six rigid body "modes" are shown in Table II.

In general, the flexible beam like rotor and case finite element models will be used to generate modal data for a single plane, say the vertical plane. This modal data can also be used to represent the horizontal plane. However, it will be noted that the sign of the modal data in either the Y or  $\theta_Z$  directions must be changed in order to maintain a sign convention that is consistent with a right hand global coordinate system. This is shown in Figure 41.

Table II. Mode Shapes for the Six Rigid Body Modes for a Subsystem.

| PHYSICAL DIRECTION AND COORDINATE FOR POINT r |            | GENERALIZED COORDINATE q |                |                |                  |                   |                   |  |  |
|-----------------------------------------------|------------|--------------------------|----------------|----------------|------------------|-------------------|-------------------|--|--|
| DIRECTION NUMBER                              | COORDINATE | X                        | Υ              | Z              | Θ <sub>x</sub>   | $\Theta_{y}$      | Θ <sub>z</sub>    |  |  |
| 5                                             | Xr, 5      | 1.0                      | 0              | 0              | 0                | L <sub>z,r</sub>  | -L <sub>y,r</sub> |  |  |
| 3                                             | Xr, 3      | 0                        | 1.0            | 0              | -Lz,r            | 0                 | L <sub>x,r</sub>  |  |  |
| 1                                             | Xr, 1      | 0                        | 0              | 1.0            | L <sub>y,r</sub> | -L <sub>x,r</sub> | 0                 |  |  |
| 6                                             | Xr, 6      | 0                        | 0              | 0              | 1.0              | 0                 | 0                 |  |  |
| 2                                             | Xr, 2      | 0                        | 0              | 0.             | 0                | 1.0               | 0                 |  |  |
| 4                                             | Xr, 4      | 0                        | 0              | 0              | 0                | 0                 | 1.0               |  |  |
|                                               |            | Ø <sub>1</sub>           | Ø <sub>2</sub> | Ø <sub>3</sub> | $\phi_4$         | φ <sub>5</sub>    | Φ6                |  |  |

COLUMNS CORRESPOND TO RIGID-BODY MODE SHAPES





Figure 41. Modal Planes.

#### Physical Connecting Elements

The force-displacement and force-velocity relationships for the physical connecting elements that connect the modal subsystems are expressed in terms of the stiffness and damping matrices shown in equation (18).

$$\{F\} = -[K_e] \{X\} - [C_e] \{X\}$$
 (18)

Equation (18) defines the physical forces exerted by the physical connecting element on the modal subsystems to which it is connected.

# Generalized Spring-Damper Element (Type 1 Physical Connecting Element)

This element is associated with two physical points located at arbitrary locations in global space. Each of these points is assigned six degrees of freedom, three translational displacements (or velocities), and three rotational displacements (or velocities). Thus, the dimension for both the stiffness or damping matrix is equal to twelve.

This element can be used to represent simple uncoupled point springs and dampers that are useful in modeling rolling element bearings. Among the other load path configurations that this element can be used to model are engine frame/sump structures, hydrodynamic bearing definitions with direct and cross stiffness and damping, and cross axis stiffness coupling arising from aerodynamic effects. A sketch of this element is shown in Figure 42.

Typically, the stiffness elements in  $[K_e]$  are computed via a finite element program, or with a closed form solution for an idealized model, or are obtained from static or dynamic testing. The damping elements in  $[C_e]$  are computed if analytical expressions are available, or are obtained from dynamic testing, or are based on the assumption that the damping is proportional to the stiffness. In this latter case,  $[C_e]\alpha[K_e]$  and the proportionality can be based on a specified percent of critical damping at a selected frequency as shown in equation (19).



Figure 42. General Spring-Damper Element (Typical Physical Connecting Element).

$$[C_e] = \frac{1}{\omega Q_F} [K_e]$$
 (19)

$$Q_F$$
 = specified Q - factor =  $\frac{1}{2 C/C_c}$ 

ω = selected frequency, radians/second.

## Space Link-Damper Element (Type 2 Physical Connecting Element)

The space link-damper element sketched in Figure 43 is described by 6th order stiffness and damping matrices.

n, m, and 1 are the direction cosines, and the column and row order correspond to directions 1, 3, and 5 at points I and J, respectively.

A = cross section area, in<sup>2</sup>

E = Young's modules

L = length

The damping matrix  $[C_e]$  can be defined either in terms of translational (dashpot) damping directed along the axis of the link or by proportional damping.

In the former case, 
$$[C_e] = \frac{L}{AE} C [K_e]$$
 (21)

 $C = \frac{1b/sec}{in}$  is a specified scalar damping value.



Figure 43. Space Link-Damper Element (Type 2 Physical Connecting Element).

In the latter case, the form of the damping matrix is that shown in equation (19).

### Rub Element (Type 3 Physical Connecting Element)

The large rotor amplitudes associated with blade loss cause heavy rotor-case rubs that are usually accompanied by severe local damage to blades and case. It is to some degree fortunate that this local damage does occur be-cause the loads acting on the bearings and frames are reduced by the action of the additional load path between the rotor and case that is provided through the mechanism of the heavy rubs. As a consequence of this action, the engine may be capable of withstanding without catastrophic structural failure, the transient loading induced by the blade loss.

The rub element allows the mathematical modeling of the nonlinear tip rub that includes the dead band displacement interval prior to closure between the rotor and case. Upon closure, an equivalent linear spring, representing the local case distortion and blade compliance, is used to define the rotor-to-case load path. The net result is a bilinear spring with zero slope over the dead band and a finite slope over the region of interference.

Figure 44 shows the relationships between the rub force and the position vectors of the rotor and case centers. Neglecting friction, the rub force can be defined as a force that acts in the direction defined by the line of centers. The vector rub force acting on the rotor can be written as:

$$F_{r} = -\frac{\Delta}{|\Delta|} (|\Delta| - \epsilon_{O}) K - (V_{R} - V_{C})C \quad \text{for } |\Delta| > \epsilon_{O}$$

$$F_{r} = 0 \quad \text{for } |\Delta| \leq \epsilon_{O}$$
(21)

Where K = Radial spring rate representing the local case distortion (represented by the bulge shown in Figure 44) and the blade compliance.

EO = Structural clearance

 $\Delta = (D_r - D_c) = \text{vector difference between the position vectors of the rotor and case centers.}$ 



AT TIME = T, VECTORS, Dc AND DR
DEFINE POSITIONS OF CASE & ROTOR
CENTERS.

VECTOR DIFFERENCE =  $\Delta$ = Dr - Dc IF  $|\Delta| > \varepsilon_o$  THEN RUB  $\varepsilon_o$ = STRUCTURAL CLEARANCE

FR = VECTOR RUB FORCE =  $-\frac{\Delta}{|\Delta|}(|\Delta| - \epsilon_o)$ K (NEGLECTING DAMPING) K = SPRING RATE REPRESENTING THE LOCAL CASE DISTORTION AND BLADE COMPLIANCE

Figure 44. Rub Force Model to Represent the Nonlinear Tip Rub Mechanism That Includes the Dead Band Interval Prior to Closure.

 $\frac{\Delta}{|\Delta|}$  = unit vector in the direction of vector  $\Delta$ .  $|\Delta|$   $V_R$  and  $V_C$  are the vector velocities of the rotor and case centers, respectively.

C is the damping rate.

In complex notation, A can be written as:

$$\Delta = D_R - D_C = (y_R + j Z_R) - (y_C + j Z_C) = (y_R - y_C) + j(Z_R - Z_C)$$

Where j = unit vector in the z-direction.

$$|\Delta| = \text{amplitude of } \Delta = \sqrt{(y_R - y_C)^2 + (z_R - z_C)^2}$$
 (22)

$$F_{r} = -\left[(y_{R}-y_{C}) + j(z_{R}-z_{C})\right]\left[1.0 - \frac{\epsilon_{o}}{|\Delta|}\right] K - (v_{R}-v_{C})C$$

$$F_{r} = -(y_{R} - y_{C}) \left[1.0 - \frac{\epsilon_{o}}{|\Delta|}\right] K - j(z_{R} - z_{C}) \left[1.0 - \frac{\epsilon_{o}}{|\Delta|}\right] K \qquad (23)$$

- c 
$$\left[ (\dot{y}_R - \dot{y}_C) \right]$$
 -  $j_C \left[ (\dot{z}_R - \dot{z}_C) \right]$ 

Defining 
$$A = \left[1.0 - \frac{\epsilon_0}{\sqrt{(y_R - y_C)^2 + (z_R - z_C)^2}}\right] K$$
 (24)

as an effective spring coefficient which is dependent on the initial structural clearance and the rotor-case relative displacement and case-blade local spring rate. A stiffness matrix can be defined as follows:

$$\begin{cases}
F_{r}^{Z} \\
F_{r}^{y} \\
F_{c}^{Z}
\end{cases} = \begin{bmatrix}
-A & 0 & A & 0 \\
0 & -A & 0 & A \\
A & 0 & -A & 0 \\
0 & A & 0 & -A
\end{cases} \cdot \begin{cases}
Z_{R} \\
y_{R} \\
Z_{C} \\
y_{C}
\end{cases}$$
(25)

Where  $F_r^z$  and  $F_r^y$  are the forces acting on the rotor center in the z and y directions, repsectively.

FZ and FZ are the forces acting on the case center in the z and y directions, respectively.

 $\mathbf{Z}_{R}$ ,  $\mathbf{y}_{R}$ ,  $\mathbf{Z}_{C}$ ,  $\mathbf{y}_{C}$  are the absolute displacements of the rotor and case center.

The stiffness matrix in equation (25) is also shown in Figure 45 and represents the  $[K_e]^*$  matrix in equation (18). The damping forces can be written in matrix form as:

$$\begin{cases}
F_{C}^{2} \\
F_{r}^{y} \\
F_{C}^{z}
\end{cases} = \begin{bmatrix}
-c & 0 & 0 & 0 \\
0 & -c & 0 & c \\
c & 0 & -c & 0 \\
0 & c & 0 & -c
\end{cases} \cdot \begin{cases}
\dot{z}_{R} \\
\dot{y}_{R} \\
\dot{z}_{C} \\
\dot{y}_{C}
\end{cases}$$
(26)

 $\dot{z}_R$ ,  $\dot{y}_R$ ,  $\dot{z}_C$ ,  $\dot{y}_C$  are the absolute velocities of the rotor and case centers. The damping matrix in equation (26) represents the  $[C_e]^*$  matrix in equation (18).

It will be noted that the rub element defined by equations (25) and (26) can also be used to model rotor-to-rotor rubs as well as rotor-to-case rubs. In this case, the inside rotor is identified with the subscript r and the outside rotor is identified with subscript C.

### Engine Support Element (Type 4 Physical Connecting Element)

Real aircraft engine mounting systems are quite complex and must be modeled with three dimensional models if accurate simulation is to be obtained. Figure 46 shows an example of an aircraft engine mounting arrangement where three mounting planes are utilized. The forward mounting plane takes vertical, side, and axial loads. The mid mounting plane takes side and roll loads. The aft mounting plane takes vertical loads only.

<sup>\*</sup>Equations (25) and (26) represent the forces acting on the connecting subsystems and already incorporate the minus signs shown in equation (18). Hence, in this case, the  $[K_e]$  and  $[C_e]$  matrices shown in equations (25) and (26) should be multiplied by (-1) to conform to the form of equation (18).



$$\begin{bmatrix} F_{R}^{1} \\ F_{R}^{3} \\ F_{C}^{1} \\ F_{C}^{3} \\ \end{bmatrix} = \begin{bmatrix} -A & O & A & O \\ O & -A & O & A \\ A & O & -A & O \\ O & A & O & -A \end{bmatrix} \cdot \begin{bmatrix} X_{R}^{1} \\ X_{R}^{3} \\ X_{C}^{1} \\ X_{C}^{2} \\ X_{C}^{2} \end{bmatrix}$$

Spring Rub Forces Acting on Rotor and Case When  $/\Delta/>\varepsilon_{\rm O}$ 

$$A = \left[1.0 - \frac{\varepsilon_{o}}{\sqrt{(x_{R}^{1} - x_{C}^{1})^{2} + (x_{R}^{3} - x_{C}^{3})^{2}}}\right] K = \left[1.0 - \frac{\varepsilon_{o}}{\sqrt{\Delta/2}}\right] K$$

Superscripts 1 and 3 Represent Directions Z and Y

Figure 45. Rub Element (Type 3 Physical Connecting Element).



Figure 46. An Example of an Aircraft Engine Mounting Arrangement.

The engine support element is a multipoint, multidirection element that provides the capability to model the complex load paths between the engine case and the pylon and thus allows for the direct modeling of actual engine mount structures. In addition, this element couples the flexible and rigid body-centerline modal subsystems, that represent the engine case, to the support links that comprise the mounting system. Thus, this element is really a combined engine support-case flexibility element that couples the beam-like casing model to the 3D pylon subsystem. Figure 47 shows typical engine case-link attachment points. The loads at these attachment points induce frame/case distortions that increase the effective flexibility that is seen at the engine centerline. In this example, the side direction flexibility at the forward mounting plane would be increased by the fan frame/case ovalization effect and the vertical direction flexibility at the aft mounting plane would be increased by the turbine frame/case ovalization effect.

Figure 48 shows the attachment and centerline points in global space, and the load directions for the two mounting planes corresponding to the typical mounting arrangement shown in Figure 40. At the forward mounting plane, points L, M, and N are the attachment points on the pylon and point I is at the engine centerline. The two attachment points on the engine case are identified by J and K. In this case, the engine support element is represented with the stiffness matrix relating to the points I, L, M, N. The displacement terms associated with points J and K are reduced out. Point I has six degrees-of-freedom and points L, M, and N each have three degrees-of-freedom. It is necessary to eliminate points J and K because the physical connecting elements are only used to define the load paths between modal subsystems or between modal subsystems and ground.

The model definition for the portion of the engine support element that pertains to the case flexibility (flexibility between the engine centerline and the case attach points) is shown in Figure 49. In this representation, all of the case flexibility is lumped at the case attach points (points J and K) and rigid members are used to transfer the loads to the centerline point (point I). The case flexibility is described by three spring rates,  $K_V$ ,  $K_h$ , and  $K_a$ . These rates are reciprocals of the case flexibility values obtained by either calculation or measurement. In the former case, a finite



IN THIS ILLUSTRATION, THE LOCAL LOADS AT THE ATTACHMENT POINTS RESULT IN ADDITIONAL MOUNTING FLEXIBILITY AT THE FORWARD PLANE, IN THE SIDE DIRECTION AND AT THE AFT PLANE, IN THE VERTICAL DIRECTION.

Figure 47. Engine Frame/Case Ovalization Effects Increase the Effective Flexibility at the Mounting Planes.



Figure 48. Combined Engine Support-Link Element (Type 4 Physical Connecting Element).



THIS SPRING ELEMENT COUPLES THE FLEXIBLE & RIGID BODY-CENTERLINE SUBSYSTEMS THAT REPRESENT THE ENGINE CASE TO THE CASE ATTACH POINTS.

THE LOCATIONS OF THE CASE ATTACH POINTS ARE ARBITRARY AT THE MOUNTING STATION.

(FWD, LOOKING AFT)



THE FRAME/CASE FLEXIBILITY IS LUMPED AT THE SPRINGS SHOWN AT POINTS J & K.

THE LENGTHS  $d_1$ ,  $d_2$ ,  $d_3$  and  $d_4$ DEFINE THE CASE ATTACH POINTS RELATIVE TO THE ENGINE CENTERLINE LOCATED AT POINT I.

Figure 49. Case Flexibility Represented by Multipoint/Direction Physical Spring Element (Which Defines a Portion of the Engine Support Element).

element model of the frame is typically used to define the flexibility values. For example,  $K_{\rm V}$  would be defined by applying an n = 1 shear flow restraining the frame model at the case attach point locations. The vertical displacement of a horizontal diameter would then be used to establish the spring rate  $K_{\rm V}$ . Figure 50 shows the twelfth order stiffness matrix that describes the case flexibility. The terms, a, b, c, d, e, and f are multipliers used to proportion the spring rates, and the association between the spring rates  $K_{\rm V}$ ,  $K_{\rm h}$ ,  $K_{\rm a}$ , and the lumped spring location points J and K are shown below.

Multipliers

| Spring Rates | Po | int |
|--------------|----|-----|
| (lb/in.)     | J  | K   |
| Kv           | а  | С   |
| Kh           | ъ  | đ   |
| Ka           | e  | f   |

#### Case Distortion Spring Rates

Kv = Vertical Spring Rate

Kh = Horizontal Spring Rate

Ka = Axial Spring Rate

In conjunction with this scheme, the following restraints must be followed.

a + c = 1.0

b + d = 1.0

e + f = 1.0

For symmetrical mounting, a = b = c = d = e = f = .5.

The engine support element is a variable geometry element that is formed by combining the spring element stiffness matrix  $[K_f]$  of Figure 50 with the stiffness matrices for connecting link elements. The stiffness matrices for the individual link elements have the same form as the stiffness matrix shown in equation (20).

$$[K_c] = [K_f] + K_1] = \begin{bmatrix} K_{11} & K_{12} \\ \hline K_{21} & K_{22} \end{bmatrix}$$
 (27)

$$[K_e] = \begin{bmatrix} K_{11} - K_{12} & K_{21}^{-1} & K_{21} \end{bmatrix}$$
 (28)

[Kf] = spring element stiffness matrix representing the case

[K1] = stiffness matrix for the links

|                             | x <sub>I</sub> 1                                                  | XI2                                                                                   | х <sub>I</sub> 3               | x <sub>1</sub> <sup>4</sup>                                                           | х <sub>1</sub> 5                                        | х <sub>1</sub> 6                                                  | x <sub>J</sub> ¹ | х <sub>Ј</sub> ³ | х <sub>J</sub> 5                | x <sub>K</sub> 1                | XK3              | x <sub>K</sub> <sup>5</sup>    |
|-----------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------|------------------|------------------|---------------------------------|---------------------------------|------------------|--------------------------------|
| F <sub>I</sub> 1            | K <sub>v</sub> (a+c)                                              | 0                                                                                     | 0                              | 0                                                                                     | 0                                                       | CK <sub>v</sub> d <sub>2</sub><br>-AK <sub>v</sub> d <sub>1</sub> | -AK <sub>V</sub> | . 0              | 0                               | -CKv                            | 0                | 0                              |
| F <sub>I</sub> <sup>2</sup> | 0                                                                 | K <sub>a</sub> ·<br>(d <sub>4</sub> <sup>2</sup> f+d <sub>3</sub> <sup>2</sup> e)     | o                              | κ <sub>a</sub> ·<br>(d <sub>1</sub> d <sub>3</sub> e-d <sub>2</sub> d <sub>4</sub> f) | K <sub>a</sub> •<br>(d4f+d3e)                           | 0                                                                 | 0                | 0                | -d 3eKa                         | 0                               | 0                | -d4fKa                         |
| <sub>P1</sub> 3             | 0                                                                 | 0                                                                                     | қ <sub>ң</sub> (b+d)           | 0                                                                                     | 0                                                       | -K <sub>h</sub><br>(d 3b+d4d)                                     | 0                | -bK <sub>h</sub> | 0                               | 0                               | -dK <sub>h</sub> | 0                              |
| F <sub>I</sub> <sup>4</sup> | 0                                                                 | K <sub>a</sub> •<br>(d <sub>1</sub> d <sub>3</sub> e-d <sub>2</sub> d <sub>4</sub> f) | 0                              | K <sub>a</sub> •<br>(ed <sub>1</sub> <sup>2</sup> +fd <sub>2</sub> <sup>2</sup> )     | K <sub>a</sub> •<br>(d <sub>1</sub> e-d <sub>2</sub> f) | 0                                                                 | 0                | 0                | -ed <sub>i</sub> K <sub>a</sub> | 0                               | 0                | fd <sub>2</sub> K <sub>a</sub> |
| <sub>F1</sub> 5             | 0                                                                 | K <sub>a</sub> .<br>(d f+d3e)                                                         | 0                              | K <sub>a</sub> ·<br>(d <sub>l</sub> e-d <sub>2</sub> f)                               | K <sub>a</sub> (e+f)                                    | 0                                                                 | 0                | 0                | -eK <sub>a</sub>                | 0                               | 0                | −f K <sub>æ</sub>              |
| F <sub>1</sub> 6            | CK <sub>V</sub> d <sub>2</sub><br>-aK <sub>V</sub> d <sub>1</sub> | 0                                                                                     | -K <sub>h</sub> +<br>(d3b+d4d) | 0                                                                                     | 0                                                       | $K_{v}(Cd_{2}^{2}+ad_{1}^{2})$ $K_{h}(bd_{3}^{2}+dd_{4}^{2})$     | aK2d1            | bd 3Kh           | 0                               | −Cd <sub>2</sub> K <sub>v</sub> | dd4Kh            | 0                              |
| Fjl                         | -aK <sub>v</sub>                                                  | o                                                                                     | 0                              | 0                                                                                     | 0                                                       | ad <sub>1</sub> K <sub>v</sub>                                    | aK <sub>V</sub>  | 0                | 0                               | 0                               | · о              | 0                              |
| <sub>p,3</sub>              | 0                                                                 | 0                                                                                     | −bK <sub>h</sub>               | 0                                                                                     | 0                                                       | bd₃K <sub>h</sub>                                                 | 0                | ьк <sub>h</sub>  | 0                               | 0                               | 0                | 0                              |
| F <sub>J</sub> 5            | 0                                                                 | -d3 eK <sub>a</sub>                                                                   | 0                              | -ed <sub>1</sub> K <sub>a</sub>                                                       | -eK <sub>a</sub>                                        | O                                                                 | 0                | 0                | eKa                             | 0                               | 0                | 0                              |
| F <sub>K</sub> <sup>1</sup> | -CK <sub>V</sub>                                                  | 0                                                                                     | O                              | 0                                                                                     | 0                                                       | -Cd <sub>2</sub> K <sub>v</sub>                                   | 0                | 0                | 0                               | CK.V                            | 0                | 0                              |
| F <sub>K</sub> <sup>3</sup> | 0                                                                 | 0                                                                                     | -dKh                           | 0                                                                                     | 0                                                       | dd4Kh                                                             | 0                | 0                | 0                               | 0                               | dK <sub>h</sub>  | 0                              |
| P <sub>k</sub> 5            | o                                                                 | -d4fKa                                                                                | 0                              | fd <sub>2</sub> K <sub>a</sub>                                                        | -fK <sub>a</sub>                                        | 0                                                                 | 0                | 0                | 0                               | 0                               | 0                | fKe                            |

The subscripts and superscripts for the forces and displacements pertain to the point numbers and the direction numbers, respectively.

Figure 50. Combined In-Plane and Out-of Plane Stiffness Matrix for the Physical Spring Element Shown in Figure 49.

- [Kc] = total unreduced stiffness matrix for the assembly
- [Ke] = reduced stiffness matrix for the engine support element

The matrix [Kc] in equation (27) represents the total unreduced stiffness matrix which includes the case points J and K. Equation (28) represents
the matrix reduction that is performed to eliminate points J and K. Figure 48
shows two examples of engine support element configurations. It will be noted
that there are no local moment load paths at points J and K or at the link
attachments at the pylon.

The damping matrix [Ce] for the engine support element is defined in terms of proporational damping and has the form of the damping matrix shown in equation (19).

# Uncoupled Point Spring-Damper Element (Type 5 Physical Connecting Element)

This element is for connection of two points with an uncoupled spring and damper. Each point has five degrees of freedom, three translational displacements (or velocities) and two rotational displacements (or velocities) (see Figure 51). These elements are typically used to connect the centerlines of beam - like modal subsystems. Because of the lack of load path coupling, good modeling practice infers that the points being connected by this element should be coincident in space.

The equations for the forces at the I and J end points of this element become rather simple due to the lack of coupling:

$$F_{x}^{I} = -K_{x} \begin{pmatrix} x^{I} - x^{J} \end{pmatrix} - C_{x} \begin{pmatrix} x^{I} - x^{J} \end{pmatrix}$$

$$F_{y}^{I} = -K_{y} \begin{pmatrix} y^{I} - y^{J} \end{pmatrix} - C_{y} \begin{pmatrix} x^{I} - x^{J} \end{pmatrix}$$

$$F_{z}^{I} = -K_{z} \begin{pmatrix} z^{I} - z^{J} \end{pmatrix} - C_{z} \begin{pmatrix} x^{I} - x^{J} \end{pmatrix}$$

$$F_{\theta}^{I} = -K_{\theta} \begin{pmatrix} x^{I} - x^{J} \end{pmatrix} - C_{\theta} \begin{pmatrix} x^{I} - x^{J} \end{pmatrix}$$



Figure 51. Uncoupled Point Spring - Damper Element (Type 5 Physical Connecting Element).

$$F_{\theta_{z}}^{I} = -K_{\theta_{z}} \left( \theta_{z}^{I} - \theta_{z}^{J} \right) - C_{\theta_{z}} \left( \dot{\theta}_{z}^{I} - \dot{\theta}_{z}^{J} \right)$$

$$F_{x}^{J} = F_{x}^{I}$$

$$F_{y}^{J} = F_{y}^{I}$$

$$F_{z}^{J} = F_{z}^{I}$$

$$F_{\theta_{y}}^{J} = F_{\theta_{y}}^{I}$$

$$F_{\theta_{z}}^{J} = F_{\theta_{z}}^{I}$$

where

 $F_i$  = Force that the element exerts on the modal subsystem or ground. subscript i is for direction  $(x, y, z, \theta_x, \text{ or } \theta_y)$  and superscript j (I or J) indicates the I-end point or the J-end point.

 $K_i$  = Spring constant. Subcript i is for direction (x, y, z,  $\theta_y$ , or  $\theta_z$ ).

 $C_i$  = Damping coefficient. Subscript i is for direction (x, y, z,  $\theta_y$ , and  $\theta_z$ ).

 $x^{i}$ ,  $y^{i}$ ,  $z^{i}$ ,  $\theta_{y}^{i}$ ,  $\theta_{z}^{i}$  = Displacements in the x, y, z,  $\theta_{y}$ , and  $\theta_{z}$  directions, respectively. Superscript i (I or J) indicates the I-end point or the J-end point.

 $\dot{x}^{i}$ ,  $\dot{y}^{i}$ ,  $\dot{z}^{i}$ ,  $\dot{\theta}_{y}^{j}$ ,  $\dot{\theta}_{z}^{i}$  = Velocities in the x, y, z,  $\theta_{y}$ , and  $\theta_{z}$  directions respectively. Superscript i (I or J) indicates the I-end point or the J-end point.

As for the generalized spring-damper element (type 1 physical connecting element), the spring constants  $(K_i)$  are computed via a finite element program, or with a closed form solution for an idealized model, or are obtained from static or dynamic testing. The damping coefficients  $(C_i)$  are computed if analytical expressions are available, or are obtained from dynamic testing, or are based on the assumption that the damping is proportional to the stiffness (see equation 19).

Note that the Type 5 element is a special case of the Type 1 element (generalized spring-damper element). The Type 1 element could always be used instead of the Type 5 element. However, it is recommended that the Type 5 element be used rather than Type 1 wherever possible. The equations for the forces for the Type 5 element are short and simple, but the Type 1 element requires matrix multiplication (see equation 18) (the Type 1 element stiffness and damping matrices are each 12 x 12), which makes the calculation of forces more lengthy. Thus, the program runs more efficiently (and saves on cost) using Type 5 elements instead of Type 1 where possible. The input is also simpler for the Type 5 element than for the Type 1 element.

#### Gyro Element

The gyro element models the cross-axis forces due to Coliolis acceleration and addresses to general whirl motion defined by the response in two planes. These cross-axis forces are mathematically treated as "Right Hand Side Forces," or externally applied forces, and couple the vertical and horizontal plane rotor subsystem models. Figure 52 shows the damping matrix used to define the gyro forces acting on the connecting subsystems. This matrix represents -1 times the [Ce] matrix in equation (18) and is derived from Euler's equations for rotational motions. For a spinning disk on a whirling shaft, Euler's equations of motion in a fixed frame can be written as:

$$\begin{bmatrix} \mathbf{I}_{\mathbf{y}} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{\mathbf{z}} \end{bmatrix} \begin{pmatrix} \ddot{\mathbf{\theta}}_{\mathbf{y}} \\ \ddot{\mathbf{\theta}}_{\mathbf{z}} \end{pmatrix} + \begin{bmatrix} \mathbf{0} & \mathbf{I}_{\mathbf{x}} \dot{\mathbf{\omega}} \\ -\mathbf{I}_{\mathbf{x}} \dot{\mathbf{\omega}} & \mathbf{0} \end{bmatrix} \begin{pmatrix} \dot{\mathbf{\theta}}_{\mathbf{y}} \\ \dot{\mathbf{\theta}}_{\mathbf{z}} \end{pmatrix} = \begin{pmatrix} \mathbf{M}_{\mathbf{y}} \\ \mathbf{M}_{\mathbf{z}} \end{pmatrix}$$
(29)

My and Mz are the applied moments.

$$\begin{bmatrix} I_y & 0 \\ 0 & I_z \end{bmatrix} =$$
the inertia matrix that defines the uncoupled rotary interia moments acting in the two planes.

$$\begin{bmatrix} 0 & I_{x\omega} \\ -I_{x\omega} & 0 \end{bmatrix}$$
 = the damping matrix that defines the coupled-velocity dependent gyroscopic moments.

The affects of the uncoupled rotary inertia are implicitly included in the rotor subsystem modal data and the velocity dependent moments are treated as the applied physical forces shown in Figure 52.



Figure 52. Gyro Element - Gyro Forces are Computed with a Velocity-Dependent Element.

#### 4.0 INPUT AND OUTPUT FILES FOR TETRA

The main input file of the TETRA program consists of namelist input. There are four namelist names - LIST1, LIST2, LIST3, and LIST4 (must be arranged in that order). First must come the LIST1 namelist input (for identifying input and input for points not located on the modal subsystems). There must be one and only one LIST1 section. Next come the LIST2 namelist sections (for the modal subsystems). One LIST2 section is required for each modal subsystem (there must be at least one modal subsystem and at most 11). The LIST3 namelist sections (if any) (for the physical connecting elements) come next. There is one LIST3 section for each physical connecting element. There may be zero physical connecting elements. The current upper limits are a maximum of five Type 1 physical connecting elements, ten of Type 2, ten of Type 3, four of Type 4, and ten of Type 5. Finally, there must be one and only one LIST4 section (which contains the restart input, the time integration input, rotor speed and rate input, unbalance load input, P cos Wt and P sin Wt load input, time-force history load input, gyro load input, and plot file input).

The namelist input for the main input file must always start in Column 2. Within a given namelist section, the input variables can be in any order. The file code for the main input file is the standard 05 file. A listing of the main input file is provided at the beginning of the printed output of TETRA for user convenience.

An interface program has been written to read the output file from the NASTRAN program, and then to automatically generate all or most of the modal subsystem (LIST2) input (see Section 6.0). The modal subsystem input thus generated by the interface program must be merged with the main input file for TETRA in the correct order as explained above.

If the run is a restart run, one additional input file is required, namely, the restart file generated by the original run. This input restart file is read in using file code 22, so the user must assign the input restart file to File 22 (@ ASG control card).

Two output files may be generated by a TETRA run. A plot file (File Code 23) is generated provided the user selects the IPLOT=1 option (see Type P-1 namelist inupt sheet). A listing of all or part of the output plot file contents is provided at the end of each run as an aid for the development of software to plot the TETRA results. (If 21 or less times are written to the output plot file the entire file is listed, but if more than 21 times are written to the output plot file, only the first 21 are listed due to space limitations.) The following pages define the variables which are on the output plot file. An output restart file (File Code 24) is also generated. If the user wishes to save these output files he must assign them (@ ASG control card). Both output files are unformatted output.

The output restart file is always a very short file and would best be saved on disk. The output plot file, however, may be a lengthy file and might be saved on tape or disk.

#### Plot File Format for TETRA Program

```
NP, NRE, NEL, NUMT

IPPLOT, IDPLOT, XPT1, YPT1, ZPT1

IPPLOTNP, IDPLOTNP, XPTNP, ZPTNP

ILEM31, ILEM31, ILEM31

ILEM3NRE, ILEM3NRE, ILEM3NRE

ILEM1, IPT1, IDIR1

ILEMNEL, IPTNEL, IDIRNEL

TIME(1), SPEEDI(1) SPEEDD(1), THETAI(1), THETAD(1)

X1(1), VEL1(1), FMOD1(1)

XNP(1), VELNP(1), FMODNP(1)

DMAG1(1), CLEAR1(1), FMAG1(1)

DMAGNRE(1), CLEARNRE(1), FMAGNRE(1)

FELEM1(1), FELEM1(1)

FELEMNEL(1), FELEMNEL(1), FELEMNEL(1)
```

```
TIME(NUMT), SPEEDI(NUMT), SPEEDD(NUMT), THETAI(NUMT), THETAD(NUMT)

X1(NUMT), VEL1(NUMT), FMOD1(NUMT)

XNP(NUMT), VELNP(NUMT), FMODNP(NUMT)

DMAG1(NUMT), CLEAR1(NUMT), FMAG1(NUMT)

DMAGNRE(NUMT), CLEARNRE(NUMT), FMAGNRE(NUMT)

FELEM1(NUMT), FELEM1(NUMT)

FELEMNEL(NUMT), FELEMNEL(NUMT)
```

#### Definitions

- NP = Number of (global point, global direction) pairs for which the displacement, velocity, and modal force is written on the plot file
- NRE = Number of Type 3 physical connecting elements (rub elements) for which the relative displacement magnitude, clearance, and force magnitude are written on the plot file
- NEL = Number of (element number, global point, global direction) trios for which the physical connecting element or gyro element force is written on the plot file
- NUMT = Number of timne steps on the plot file
- IPPLOT<sub>i</sub> = Global point number for the i-th (global point, global direction) pair on the plot file
- IDPLOT<sub>i</sub> = Global direction number for the i-th (global point, global direction) pair on the plot file
- XPTi,YPTi,ZPTi = X,Y and Z coordinates (global system) respectively for the i-th (global point, global direction) pair on the plot file
- ILEM3; = Element number for the i-th Type 3 physical connecting element (rub element) for which the displacement magnitude, clearance, and force magnitude are written on the plot file
- ILEM<sub>i</sub> = Element number for the i-th physical connecting element or gyro element for which the element force is written on the plot file
- IPT; = Global point number for the i-th physical connecting element or gyro element for which the element force is written on the plot file

- IDIR<sub>i</sub> = Global direction number for the i-th physical connecting element or gyro element for which the element force is written on the plot file
- TIME(I) = Time (seconds) for the I-TH time step on the plot file
- SPEEDI(I) = Independent rotor speed (rpm) for the I-TH time step on the plot file
- SPEEDD(I) = Dependent rotor speed (rpm) for the I-TH time step on the plot
  file
- THETAI(I) = Independent rotor angular displacement (revolutions) for the I-TH time step on the plot file
- THETAD(I) = Dependent rotor angular displacement (revolutions) for the I-TH time step on the plot file
- X<sub>i</sub>(I) = Displacement (inches or radians) for the i-th (global point, global direction) pair and for the i-th time step on the plot file
- VEL<sub>i</sub>(I) = Velocity (in/sec or rad/sec) for the i-th (global point, global direction) pair and for the I-TH time step on the plot file
- FMOD<sub>i</sub>(I) = Modal force (1b or in-1b) for the i-th (global point, global direction) pair and for the I-TH time step on the plot file
- $DMAG_i(I)$  = Relative displacement mangitude (inches) for the i-th Type 3 physical connecting element (rub element) and for the I-TH time step on the plot file
- CLEAR<sub>i</sub>(I) = Clearance (inches) for the i-th Type 3 physical connecting element (rub element) and for the I-TH time step on the plot file
- FMAG<sub>i</sub>(I) = Force mangitude (pounds) for the i-th Type 3 physical connecting element (rub element) and for the I-TH time step on the plot file
- $FELEM_i(I) = Force$  (lb or in-lb) for the i-th (element number, global point number, global direction number) trio and for the I-th time step on the plot file

#### 5.0 INPUT SHEETS

Following is a discussion of the namelist input sheets for the main input file of TETRA. Input data should follow the order given for the input sheets (starting with Type A input, then Type B, etc.). Always begin the namelist input in Column 2 of each line.

### Identification Sheet Type A

Each TETRA run, no matter what the engine system or the type of analysis, must have one of these sheets. The four lines are filled in with the information indicated. The last two lines give the user the opportunity to include a descriptive name for the case. All of these lines are reproduced on the output.

| Page     | of |  |
|----------|----|--|
| NAMELIST |    |  |
| Type A   |    |  |

# TETRA IDENTIFYING INPUT

| $\overline{\mathbb{V}}$ |               |              |     |
|-------------------------|---------------|--------------|-----|
| \$LIST1                 |               | _            |     |
| NAME= '                 | 3DATE1)       | (3)CHARGE(1) | '   |
| ADDRES= '               | 3MAIL DROP(1) | 3EXT         | '   |
| IDENT1= '               |               |              | ',  |
| IDENT2= '               |               |              | ' , |

Maximum of 60 characters enclosed within apostrophes for each of the above variables.

#### TYPE B INPUT

### Physical Points Not Located on Modal Subsystems

This input sheet defines the boundary conditions of the problem. The points which the user desires to ground are defined here. If the code is specified as fixed (CODE=1), then the point is fixed in 6 DOF. If the code is specified as free (CODE=0), then the point is free to move in 6 DOF. The points defined on this sheet may not be located on the modal subsystems but can only be located at ground or at the junctions of links and engine support elements.

### **TETRA**

### PHYSICAL POINTS NOT LOCATED ON MODAL SUBSYSTEMS





| POINT NUMBER<br>NOT ON MODAL          | CODE<br>0= FREE | TO GI | OBAL S |    |
|---------------------------------------|-----------------|-------|--------|----|
| SUBSYSTEM *                           | 1=FIXED         | Χ     | Y      | Z  |
| <u> </u>                              |                 |       |        | L  |
| ·                                     |                 | •:    | ·      | ·  |
| ,                                     |                 | ·     | ·      | ·, |
| ,                                     | ·               | ,     | ,      | ·, |
| ,                                     |                 | ·     | ·      | ,, |
|                                       |                 | ·     | •      | ,, |
| ,                                     |                 | ·     | ·      | ·  |
|                                       |                 | ·     | ·      | ,, |
| · · · · · · · · · · · · · · · · · · · |                 | ·     | ·      | ·, |
| ?                                     |                 | ·     | ·      | ·, |
| ,                                     |                 | ·     | ·      | ·, |

<sup>\*</sup> These points include ground points and points between link and engine support elements. It will be noted that points on modal subsystems cannot be attached directly to ground, but can be attached to ground through physical connecting elements.

### Modal Subsystem Input (Type C1 Through C-11)

Modal subsystem input is accomplished using the LIST2 namelist section.

One LIST 2 namelist section is required for each modal subsystem. The number of modal subsystems present is counted by the program automatically.

The user may input a title (this is optional) for each subsystem using the TITLE='...', variable. Up to 60 characters may be enclosed within the apostrophes.

The subsystem number (ISUB variable) is required. The subsystem number must be an integer number between 1 and 11. The subsystem numbers are not arbitrary - each subsystem number represents a different type of modal subsystem with differing degrees of freedom (see Figure 53). The user chooses which of the modal subsystems to use, and can arrange these modal subsystems in any order. The user must have input for at least one modal subsystem.

Note that Subsystems 1-3 represent "Rotor 1" and Subsystems 4-6 represent "Rotor 2" (see Figure 53). Of course, the user's model may have only one rotor, in which case either Rotor 1 (Subsystems 1-3) or Rotor 2 (Subsystems 4-6) could be used. If the engine is a dual spool engine, however, the user might want to use both "Rotor 1" and "Rotor 2" in his model. In this instance, "Rotor 1" might represent, say, the low pressure system (fan, low pressure compressor, shaft, and low pressure turbine), and Rotor 2 might represent the high pressure system (high pressure compressor, shaft, and high pressure turbine). Or vice-versa - the choice is up to the user. The user has a great deal of flexibility and can model with these subsystems virtually any jet engine configuration.

Each subsystem requires input for points on the subsystem (PTS array) (see input sheets C-2, C-5, C-8 and C-11). Each subsystem must have at least one point. The current upper limits are 10 for the rotor subsystems (Numbers 1-6), 20 for the case (or housing) subsystems (Numbers 7-10), and 10 for the pylon subsystem (Number 11). The rotor and case subsystems (Subsystems 1-10) represent engine centerline models. Thus, if the user chooses his

| SUBSYSTEM<br>NUMBER | DESCRIPTION              | NUMBER OF<br>DEGREES OF<br>FREEDOM | DIRECTIONS                                    |
|---------------------|--------------------------|------------------------------------|-----------------------------------------------|
| 1 .                 | Rotor 1 Vertical Plane   | 2                                  | z, $\theta_{\mathbf{Y}}$                      |
| 2                   | Rotor 1 Horizontal Plane | 2                                  | $Y, \theta_{Z}$                               |
| 3                   | Rotor 1 Rigid Body       | 5                                  | $X, Y, \theta_{Y}, z, \theta_{Z}$             |
| 4                   | Rotor 2 Vertical Plane   | 2                                  | z, θ <sub>v</sub>                             |
| 5                   | Rotor 2 Horizontal Plane | 2                                  | $Y, \theta_{Z}$                               |
| 6                   | Rotor 2 Rigid Body       | 5                                  | $X, Y, \theta_{Y}, z, \theta_{Z}$             |
| 7                   | Case Vertical Plane      | 2                                  | $z, \theta_{v}$                               |
| 8                   | Case Horizontal Plane    | 2                                  | $Y, \theta_{2}$                               |
| 9                   | Case Rigid Body          | 6                                  | $x, \theta_{x}, y, \theta_{y}, z, \theta_{z}$ |
| 10                  | Case Torsional           | 1                                  | θ <b>x</b>                                    |
| 11                  | Pylon                    | 3                                  | X, Y, Z                                       |

Figure 53. Modal Subsystem Summary.

X-axis (axial direction) to coincide with the engine centerline, then the y and z coordinates for the points on Subsystems 1-10 will all be zero. This is not true for the pylon subystem (Number 11), however. If the subsystem referecne point does not coincide with the global origin, the user should input the coordinates (XREF, YREF and ZREF variables) of the subsystem reference point, so the program can make adjustment.

## MODAL SUBSYSTEM INPUT FOR VERTICAL AND HORIZONTAL PLANE SUBSYSTEMS

THIS INPUT SHEET APPLIES FOR THE FOLLOWING MODAL SUBSYSTEMS:

NUMBER 1 (ROTOR 1 VERTICAL PLANE)
NUMBER 2 (ROTOR 1 HORIZONTAL PLANE)
NUMBER 4 (ROTOR 2 VERTICAL PLANE)
NUMBER 5 (ROTOR 2 HORIZONTAL PLANE)
NUMBER 7 (CASE VERTICAL PLANE)
NUMBER 8 (CASE HORIZONTAL PLANE)



NOTE - THE PHYSICAL MODEL (MODAL SOURCE) FOR THE SUBSYSTEM IS ALWAYS A VERTICAL PLANE MODEL.

```
$ END
$LIST2
TITLE= _______, SUBSYSTEM NUMBER (1,2,4,5,7,or 8)

ENTER THE COORDINATES (INCHES) OF THE SUBSYSTEM REFERENCE POINT:

XREF= _____, X COORDINATE (O ASSUMED)

YREF= _____, Y COORDINATE (O ASSUMED)

ZREF= _____, Z COORDINATE (O ASSUMED)
```

Maximum of 60 characters enclosed within apostrophes for the title.

# MODAL SUBSYSTEM INPUT FOR VERTICAL AND HORIZONTAL PLANE SUBSYSTEMS (CONTINUED)

ENTER THE COORDINATES OF THE TETRA POINTS. MAXIMUM OF 10 POINTS FOR SUBSYSTEMS 1,2,4,AND 5. MAXIMUM OF 20 POINTS FOR SUBSYSTEMS 7 AND 8. Y and Z COORDINATES NORMALLY 0. n=NUMBER OF POINTS IN THE SUBSYSTEM.

|        |           | TETRA<br>POINT | COORDINATES<br>SUBSYSTEM RE |        |           | RESPECT | ТО       |
|--------|-----------|----------------|-----------------------------|--------|-----------|---------|----------|
|        |           | NUMBER         | Х                           | Y      |           | Z       |          |
|        |           | $\nabla$       |                             |        |           |         | · ·      |
|        |           | PTS(1,1        | )=                          |        |           |         |          |
|        | 1 2       |                |                             | '      | —.'-      |         | <u>'</u> |
| BER    |           |                | _'                          | '<br>' | —,<br>—,- |         | —,<br>—, |
| NUMBER | :         | •              |                             |        |           |         |          |
| POINT  |           | . •            |                             |        |           |         |          |
|        |           | •              | _                           |        |           | •       |          |
| VI     | •         | •              |                             |        |           |         |          |
| LOCAL  | $ \cdot $ | •              |                             |        |           |         |          |
|        | •         | •              |                             |        |           |         |          |
|        | n         |                | _ '                         | ·      | ,         | ·<br>   | ,        |

ENTER THE VALUES BELOW FOR EACH MODE. MAXIMUM OF 30 MODES. N=NUMBER OF SUBSYSTEM MODES.

|                   | FREQUENCY (RPM) | POTENTIAL<br>ENERGY | Q-FACTOR | O=FLEXIBLE<br>1=RIGID BODY |
|-------------------|-----------------|---------------------|----------|----------------------------|
|                   | XMODES (1,1     | )=                  |          |                            |
| LOCAL MODE NUMBER | •               | ·                   | ,        | )                          |
| N                 |                 | > <u></u>           | ·        | ),                         |

| PAGE     | OF |   |
|----------|----|---|
|          |    |   |
| NAMELIST |    | • |
| TYPE C-3 |    |   |

# MODAL SUBSYSTEM INPUT FOR VERTICAL AND HORIZONTAL PLANE SUBSYSTEMS (CONTINUED)

ENTER THE REQUIRED MODE SHAPES BELOW. n=NUMBER OF POINTS IN THE SUBSYSTEM. N=NUMBER OF SUBSYSTEM MODES.

|                                 | TRANSLATION T   | SLOPE 0     | SHEAR V       | MOMENT M |
|---------------------------------|-----------------|-------------|---------------|----------|
|                                 | INCHES          | RADIANS     | POUNDS        | IN-LB    |
|                                 |                 |             |               |          |
|                                 | V7              |             |               |          |
|                                 | ₩<br>VH(1,1,1)= |             |               |          |
|                                 |                 |             |               |          |
|                                 |                 |             | · <u> </u>    | ,,       |
| LOCAL MODE 1 LOCAL POINT NUMBER | ,               |             | ,             | ·,       |
|                                 | ,               |             | ,             | ··       |
|                                 | •               |             |               |          |
| Z Z   ·                         | •               |             |               |          |
| LOCAL MODE J                    | •               |             |               |          |
| 18 7                            | •               |             |               |          |
| 무 [ ]                           | •               |             |               |          |
|                                 | •               |             |               |          |
|                                 |                 |             | .,            | ··       |
|                                 | VH(1,1,2)=      |             | T             |          |
| 1 1,1                           |                 |             |               |          |
| MBER<br>3                       |                 |             | ,             | ·,       |
| N 2 3                           | ,               |             | . •           | ·——·     |
| LOCAL MODE 2 LOCAL POINT NUMBER | ,               | <del></del> | .*            | ,,       |
| [[ 타]                           | •               |             |               |          |
| N E                             | •               |             |               |          |
| [독 8] .                         | •               |             |               |          |
| 18 H                            | •               |             |               |          |
| [] 정[                           | •               |             |               |          |
|                                 |                 |             | •             |          |
| لتللا                           | ·               |             | · <del></del> | ·        |
|                                 | •               |             |               |          |
|                                 | •               |             |               |          |
|                                 | •               |             |               |          |
|                                 | •               |             |               |          |
|                                 | 170 (1 1 N) -   |             |               |          |
|                                 | VH(1,1,N)=      |             |               | ,        |
| g 1                             | <u> </u>        |             | ,             | •        |
| Z WBE                           |                 |             | ,             | ,        |
| LOCAL MODE N LOCAL POINT NUMBE  |                 |             | 3             | ,        |
| E Z                             | •               |             |               | -        |
| 8 K                             | •               |             |               |          |
| CAL CAL                         | •               |             |               |          |
| ا ابا کا                        | •               |             |               |          |
|                                 | •               |             |               |          |
| 8 .                             | •               |             |               |          |
|                                 |                 |             |               |          |

PAGE \_\_\_ OF \_\_\_ NAMELIST TYPE C-4

#### MODAL SUBSYSTEM INPUT FOR RIGID BODY SUBSYSTEMS

THIS INPUT SHEET APPLIES FOR MODAL SUBSYSTEM 3 (ROTOR 1 RIGID BODY), MODAL SUBSYSTEM 6 (ROTOR 2 RIGID BODY), AND MODAL SUBSYSTEM 9 (CASE RIGID BODY).



NOTE: MOTION IN THE 8X DIRECTION IS NOT CONSIDERED FOR THE ROTOR SUBSYSTEMS (3 AND 6). MOTION IN THIS DIRECTION CAN BE CONSIDERED FOR THE CASE SUBSYSTEM (9), HOWEVER.

| ₹                                                                |    |
|------------------------------------------------------------------|----|
| \$ END                                                           | •  |
| \$LIST2                                                          |    |
| TITLE= '                                                         | ·, |
| ISUB=, SUBSYSTEM NUMBER (3,6, OR 9)                              |    |
| ENTER THE COORDINATES (INCHES) OF THE SUBSYSTEM REFERENCE POINT: |    |
| XREF= X Coordinate (0 assumed)                                   |    |
| YREF= Y Coordinate (0 assumed)                                   |    |
| ZREF= Z Coordinate (0 assumed)                                   |    |

Maximum of 60 characters enclosed within apostrophes for the title.

| PAGE     | OF | - |
|----------|----|---|
| NAMELIST |    |   |
| TVDE C-5 |    |   |

### MODAL SUBSYSTEM INPUT FOR RIGID BODY SUBSYSTEMS (CONTINUED)

ENTER COORDINATES OF TETRA POINTS. MAXIMUM OF 10 POINTS FOR SUBSYSTEMS 3 AND 6 AND MAXIMUM OF 20 POINTS FOR SUBSYSTEM 9. Y AND Z COORDINATES NORMALLY 0. n= NUMBER OF SUBSYSTEM POINTS.

| TETRA  | COORDINATES | (INCHES) W  | ITH RESPECT |
|--------|-------------|-------------|-------------|
| POINT  | TO SUBSYSTE | M REFERENCE | POINT       |
| NUMBER | X           | Y           | Z           |

|              |   | PTS(1, | 1)= |     |  |
|--------------|---|--------|-----|-----|--|
|              | 1 |        |     |     |  |
| 뜶            | 2 |        |     |     |  |
| E E          | 3 |        | ,   |     |  |
| POINT NUMBER |   | •      |     |     |  |
| H            | • | •      |     |     |  |
| E            | • | •      |     |     |  |
| 8            | • | •      |     | , , |  |
| ابا          | • | •      |     |     |  |
| LOCAL        | • | •      |     |     |  |
| 13           | • | •      | •   |     |  |
|              | n | l ——   | ,   |     |  |

| entei | R THE SUBSYS' | rem | CENTER C  | OF G | RAVITY   | COORDINATES | (INCHES) | WIT |
|-------|---------------|-----|-----------|------|----------|-------------|----------|-----|
| RESPI | ECT TO SUBSYS | STE | M REFEREN | NCE  | POINT:   |             |          |     |
| XŒ=   | ,             | X   | COORDINAT | TE ( | (O ASSUD | ŒD)         |          |     |
| YCG=  | ,             | Y   | COORDINAT | TE ( | (O ASSUM | ŒD)         |          |     |
| ZCG=  |               |     | COORDINAT |      |          |             |          |     |
|       |               |     |           |      |          |             |          |     |

| PAGE     | OF |  |
|----------|----|--|
| NAMELIST | •  |  |
| TVDE C-6 |    |  |

#### MODAL SUBSYSTEM INPUT FOR RIGID BODY SUBSYSTEMS (CONTINUED)

ENTER THE SUBSYSTEM PHYSICAL WEIGHT PROPERTIES FOR EACH OF THE SIX DIRECTIONS. IF MOTION IN A PARTICULAR DIRECTION IS TO BE NEGLECTED, ENTER ZERO FOR THE PHYSICAL WEIGHT PROPERTY IN THAT DIRECTION. (SINCE THE 9X DIRECTION IS ALWAYS NEGLECTED FOR SUBSYSTEMS 3 AND 6, WMIX SHOULD ALWAYS BE SET TO ZERO OR OMITTED FOR SUBSYSTEMS 3 AND 6). AT LEAST ONE OF THE PHYSICAL WEIGHTS MUST BE NON-ZERO.

| X                                         | WX=    | WEIGHT, POUNDS (O ASSUMED)                                     |
|-------------------------------------------|--------|----------------------------------------------------------------|
| H P S Y                                   | WY=    | WEIGHT, POUNDS (O ASSUMED)                                     |
| SEEE Z                                    | WZ =,  | WEIGHT, POUNDS (0 ASSUMED)                                     |
| IS SI GIGI BX                             | WMIX = | POLAR MOMENT OF INERTIA, LB-IN <sup>2</sup> (O ASSUMED)        |
| PHY S S S S S S S S S S S S S S S S S S S | WMIY=  | MOMENT OF INERTIA ABOUT Y AXIS, LB-IN2 (O ASSUMED)             |
| α α α θ <sub>Z</sub>                      | WMIZ=  | MOMENT OF INERTIA ABOUT Z AXIS, LB-IN <sup>2</sup> (O ASSUMED) |

# MODAL SUBSYSTEM INPUT FOR SUBSYSTEM 10 (CASE TORSIONAL SUBSYSTEM)



| abla      |                                                 |           |
|-----------|-------------------------------------------------|-----------|
| \$ END    |                                                 |           |
| \$LIST2   |                                                 |           |
| TITLE= '  |                                                 |           |
| ISUB=10,  |                                                 |           |
| ENTER THE | COORDINATES (INCHES) OF THE SUBSYSTEM REFERENCE | CE POINT: |
| XREF=     | ,X COORDINATE (O ASSUMED)                       |           |
| YREF=     | Y COORDINATE (O ASSUMED)                        |           |
| ZREF=     | ,Z COORDINATE (O ASSUMED)                       |           |

Maximum of 60 characters enclosed within apostrophes for the title.

# MODAL SUBSYSTEM INPUT FOR SUBSYSTEM 10 (CASE TORSIONAL SUBSYSTEM) (CONTINUED)

ENTER THE COORDINATES OF THE TETRA POINTS. MAXIMUM OF 20 POINTS. X AND Y COORDINATES NORMALLY O n=NUMBER OF POINTS IN THE SUBSYSTEM

|        |           | TETRA<br>POINT | TO SUBSYST | S (INCHES) W<br>EM REFERENCE | POINT    |
|--------|-----------|----------------|------------|------------------------------|----------|
|        |           | NUMBER         | Х          | Y                            | Z        |
|        |           | $\sqrt{2}$     |            |                              |          |
|        |           | PTS(1,1)       | =          |                              |          |
| ER     | 1 2       | <del></del>    | ,          | ·                            | ,,<br>,, |
| NUMBER | 3         |                | ,          | ,                            | ,,       |
|        |           | •              |            |                              |          |
| POINT  | $ \cdot $ | •              |            | •                            |          |
|        | $ \cdot $ | •              |            |                              |          |
| LOCAL  | :         |                |            |                              |          |
|        | n         | · .            | ·          | ,                            | ·,       |

ENTER THE VALUES BELOW FOR EACH MODE. MAXIMUM OF 30 MODES. N=NUMBER OF SUBSYSTEM MODES.

|                |       | FREQUENCY (RPM)    | POTENTIAL<br>ENERGY | Q-FACTOR | MODE TYPE 0=FLEXIBLE 1=RIGID BODY |
|----------------|-------|--------------------|---------------------|----------|-----------------------------------|
|                | ,     | 2/<br>XMODES (1,1) | =                   |          |                                   |
| AL MODE NUMBER | 1 2 3 | •                  |                     | 333      | .,                                |
| LOCAL          | N     | ·<br>              | ·                   | ·        | .,,                               |

# MODAL SUBSYSTEM INPUT FOR SUBSYSTEM 10 (CASE TORSIONAL SUBSYSTEM) (CONTINUED)

ENTER THE REQUIRED MODE SHAPES BELOW. n=NUMBER OF POINTS IN THE SUBSYSTEM. N=NUMBER OF SUBSYSTEM MODES.

|                                                         | TWIST θ<br>RADIANS | MOMENT<br>IN-LB |
|---------------------------------------------------------|--------------------|-----------------|
| LOCAL MODE 1 LOCAL POINT NUMBER 3 · · · · · · · · · · · | TOR(1,1,:          | 1)= ', ',       |
| LOCAL MODE NUMBER LOCAL POINT NUMBER                    | TOR(1,1,:          | 2)= '', '',     |
|                                                         | •<br>•             | <i>1</i> ) –    |
| LOCAL MODE NUMBER LOCAL POINT NUMBER                    | TOR(1,1,1          | ·               |

PAGE OF NAMELIST TYPE C-10

# MODAL SUBSYSTEM INPUT FOR SUBSYSTEM 11 PYLON SUBSYSTEM



| ₹         |                                                        |   |
|-----------|--------------------------------------------------------|---|
| \$ END    |                                                        |   |
| \$LIST2   |                                                        |   |
| TITLE= '_ | <u>'</u>                                               |   |
| ISUB=11,  |                                                        | • |
| ENTER THE | COORDINATES (INCHES) OF THE SUBSYSTEM REFERENCE POINT: |   |
| XREF=     | X COORDINATE (O ASSUMED)                               |   |
| YREF =    | Y COORDINATE (O ASSUMED)                               |   |
| ZREF=     | z COORDINATE (O ASSUMED)                               |   |

Maximum of 60 characters enclosed within apostrophes for the title.

## MODAL SUBSYSTEM INPUT FOR SUBSYSTEM 11 (PYLON SUBSYSTEM) (CONTINUED)

ENTER THE COORDINATES OF THE TETRA POINTS. MAXIMUM OF 10 POINTS. N=NUMBER OF POINTS IN THE SUBSYSTEM

|                    |       | TETRA<br>POINT | COORDINATES (INCHES) WITH RESPECT<br>TO SUBSYSTEM REFERENCE POINT |                |   |  |  |  |  |  |  |
|--------------------|-------|----------------|-------------------------------------------------------------------|----------------|---|--|--|--|--|--|--|
|                    |       | NUMBER         | X                                                                 | Y              | Z |  |  |  |  |  |  |
|                    |       | <b>V</b>       |                                                                   |                |   |  |  |  |  |  |  |
|                    |       | PTS (1,1)      | ) =                                                               |                |   |  |  |  |  |  |  |
| LOCAL POINT NUMBER | 1 2 3 | •              |                                                                   | _,<br>_,<br>_, |   |  |  |  |  |  |  |
| ្ន                 | n     |                |                                                                   |                |   |  |  |  |  |  |  |

ENTER THE VALUES BELOW FOR EACH MODE. MAXIMUM OF 30 MODES. N=NUMBER OF SUBSYSTEM MODES.

|                   |       | FREQUENCY (RPM) | POTENTIAL<br>ENERGY | Q-FACTOR | MODE TYPE<br>0=FLEXIBLE<br>1=RIGID BODY |
|-------------------|-------|-----------------|---------------------|----------|-----------------------------------------|
|                   |       | <b>②</b>        |                     |          |                                         |
|                   |       | XMODES (1, 1    | )=                  |          |                                         |
| LOCAL MODE NUMBER | 1 2 3 |                 |                     |          |                                         |
| 9                 | N     |                 |                     |          |                                         |

# MODAL SUBSYSTEM INPUT FOR SUBSYSTEM 11 PYLON SUBSYSTEM (CONTINUED)

ENTER THE REQUIRED MODE SHAPES BELOW. n= NUMBER OF POINTS IN THE SUBSYSTEM. N= NUMBER OF SUBSYSTEM MODES.

| TRANSLATION TRANSLATION TANSLATION TY INCHES  TY INCHES INCHES  PYL (1,1,1) =  PY |    |    |           | n- nomber of                          |             | DIN.   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|-----------|---------------------------------------|-------------|--------|
| PYL(1,1,N) =  PYL(1,1,1) =  PYL(1,1,1) =  PYL(1,1,1) =  PYL(1,1,2) =  PYL(1,1,2) =  PYL(1,1,N) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |    |           |                                       |             |        |
| PYL(1,1,N) =  PYL(1,1,1) =  PYL(1,1,1) =  PYL(1,1,1) =  PYL(1,1,2) =  PYL(1,1,2) =  PYL(1,1,N) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |    |           | TX                                    | TY          | TZ     |
| PYL(1,1,1) =    TOCAL MODE 2   1   1   2   3   1   2   3   1   2   3   1   2   3   3   1   2   3   3   1   3   3   1   3   3   1   3   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |    |           | INCHES                                | INCHES      | INCHES |
| TOCAL MODE 2  LOCAL MODE 2  LOCAL MODE 3  LOCAL MODE 1  LOCAL POINT NUMBER  LOCAL POINT NUMBER  LOCAL MODE 1  LOCAL MODE 1  LOCAL MODE 1  LOCAL MODE 2  LOCAL MODE 1  LOCA |    |    |           | $\nabla$                              |             |        |
| TOCAL MODE 2  LOCAL MODE 2  LOCAL MODE 2  LOCAL MODE 2  LOCAL MODE 3  LOCAL MODE 3  LOCAL MODE 1  LO | _  | ,  |           | PYL(1,1,1)=                           |             |        |
| PYL(1,1,N)=  PYL(1,1,N)=  PYL(1,1,N)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | 田田 |           | · · · · · · · · · · · · · · · · · · · |             | ,      |
| PYL(1,1,N)=  PYL(1,1,N)=  PYL(1,1,N)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -  |    |           | ,                                     |             | ,      |
| PYL(1,1,2) =  PYL(1,1,2) =  1 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 日日 | E  |           |                                       | <del></del> | ·      |
| PYL(1,1,2) =  PYL(1,1,2) =  1 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \2 | E  |           | •                                     |             |        |
| PYL(1,1,2) =  PYL(1,1,2) =  1 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | 2  | $ \cdot $ | •                                     |             |        |
| PYL(1,1,2) =  PYL(1,1,2) =  1 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18 | ≓  | $ \cdot $ | •                                     |             |        |
| PYL(1,1,2) =  PYL(1,1,2) =  PYL(1,1,2) =  PYL(1,1,2) =  PYL(1,1,1) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -  | 0  | 'n        | •                                     |             | _      |
| LOCAL MODE 2 LOCAL MODE 2 LOCAL POINT NUMBER  1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | 17 | لتا       |                                       |             | ,      |
| LOCAL MODE 2 LOCAL MODE 2 LOCAL POINT NUMBER  1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |    |           | PYL(1.1.2)=                           |             |        |
| PYL(1,1,N)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    | RE | 1         | ,                                     |             | , ,    |
| PYL(1,1,N)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2  | 9  | 2         |                                       |             | ,      |
| PYL(1,1,N)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 出  | Z  | 3         |                                       |             | ,      |
| PYL(1,1,N)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ΙŞ | Z  |           | •                                     |             |        |
| PYL(1,1,N)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13 | Š  | :         | •                                     |             |        |
| PYL(1,1,N)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S  | 1  | .         | •                                     | ,           |        |
| PYL(1,1,N)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -  | ঠ  |           | • `                                   |             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L  | 13 | n         |                                       | <del></del> | ,      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |    |           | 7007 (3 1 N)                          |             |        |
| LOCAL MODE N LOCAL POINT NUMBE  SOLUTION  LOC |    | IE | i i       | PXT(I'I'N)=                           |             |        |
| LOCAL MODE 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _  | BE |           | ·                                     |             | ,      |
| LOCAL POINT S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E  | Ž  |           |                                       | ~           | ·;     |
| LOCAL POIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | H  | •         | •                                     |             |        |
| LOCAL POCAL  | دا | 15 | $ \cdot $ | •                                     |             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13 | Δ, |           | •                                     |             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13 | B  |           | •                                     |             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | Š  | n         |                                       |             |        |

Now for a discussion of the modal subsystem input that is particular to certain subsystems. First, consider the vertical and horizontal plane subsystems (Subsystems 1, 2, 4, 5, 7, and 8). Input sheets C-1, C-2, and C-3 apply for these subsystems. The XMODES array (see input sheet C-2) is required to supply data for each mode. These subsystems must have data for at least one and a maximum of 30 modes. The frequency and potential energy for each mode are entered in the XMODES array. These values are used to compute the generalized weight for the mode. Next, Q-factor Qf is input for the mode. The Q-factor determines the modal damping for the mode (provided the mode type code equals 0) and can be defined as follows:

$$Q_{f} = \frac{1}{2\left(\frac{C}{C_{c}}\right)}$$

where C=damping coefficient and C<sub>C</sub>=critical damping coefficient. If the user wishes to neglect damping, he should input Qf=0, which is a signal to the computer to neglect damping. Next, the user inputs a code specifying mode type (0=flexible, or 1=rigid body). The code 1 is used for "soft spring" rigid body modes which are used to approximate the true rigid body modes. If this code equals 1 (rigid body), then the modal stiffness and modal damping are both set to zero (regardless of what was inputted for Q-factor). If, however, the mode type code equals 0 (flexible), the modal stiffness is calculated based on the Q-factor, generalized stiffness, and frequency.

Also the mode shape input (VH array - see page C-3) is required for the vertical and horizontal plane subsystems.

If the user is using the NASTRAN/TETRA interface program to generate input data for the vertical and horizontal plane subsystems, he should make his NASTRAN model a vertical plane model as shown on input sheet C-1. Since the rotors are always rotationally symmetric (and often the case is also), the same vertical plane NASTRAN model can usually be used to generate modal subsystem input for both the vertical and horizontal plane subsystems. In this
instance, the only difference in the TETRA modal subsystem input for the vertical and horizontal plane subsystems of a given component will be the title
and the subsystem number.

Next, consider the rigid body subsystems (Subsystems 3, 6 and 9). Input sheets C-4, C-5, and C-6 apply for these subsystems. The center of gravity coordinates with respect to the subsystem reference point (XCG, YCG and ZCG variables) are required for these subsystems. In addition, the physical weight properties should be input (see input sheet C-6), but only for those directions for which rigid body motion is to be considered. Generalized coordinates are assigned for each direction for which the physical weight property is non-zero, but are not assigned if the physical weight property was set equal to zero or omitted. Since the  $\theta_X$  direction is always neglected for Subsystems 3 and 6. At least one of the physical weights must be non-zero.

The user is cautioned to avoid doubling the effect of the rigid body modes, as would happen if the user included the "soft spring" rigid body modes for the vertical and horizontal plane subsystems as obtained from the NASTRAN program and then included the same rigid body modes (that is, rigid body modes for motion in directions Z,  $\theta_y$ , Y, and  $\theta_z$ ) in the rigid body subsystem. However, the user could model rigid body motion for the Z,  $\theta_y$ , Y, and  $\theta_z$  directions using the vertical and horizontal plane subsystems (which cover those four degrees of freedom only) and then use the rigid body subsystem just for motion in the X and  $\theta_x$  (Subsystem 9 only) directions (the user would zero out or omit the physical weight properties in all but the X and  $\theta_x$  directions for the rigid body subsystem).

From the above, it is evident that the user has the choice of modeling rigid body motion for the Z,  $\theta_y$ , Y, and  $\theta_z$  directions using either "soft spring" rigid body modes in the vertical and horizontal plane subsystems or the rigid body subsystem. Both ways of modeling rigid body motion for these directions give equivalent results. However, it has been found that TETRA

runs faster (and thus saves on cost) if the rigid body modes for these directions are included in the vertical and horizontal plane subsystems rather than the rigid body subsystem. This is due to the fact that the rigid body subsystems have more degrees of freedom (five for Subsystems 3 and 6 and six for Subsystem 9) than the vertical and horizontal plane subsystems (which have two degrees of freedom). Also, using the vertical and horizontal plane subsystems for the rigid body modes eliminates the need to input the center of gravity coordinates and the physical weights.

The input for the case torsional subsystem (Number 10) (see input sheets C-7, C-8, and C-9) and the pylon subsystem (Number 11) (see input sheets C-10, C-11, and C-12) is a similar to the input sheets for the vertical and horizontal plane subsystems (Sheets C-1, C-2, and C-3). However, instead of using the VH array to input the mode shapes as is done for the vertical and horizontal subsystems, the TOR array (see input sheet C-9) is used to input the mode shapes for the torsional subsystem and the PYL array (see input sheet C-12) is used to input the mode shapes for the pylon subsystem.

#### TYPE D1 AND TYPE D2 INPUTS

# Type 1 Physical Connecting Element (Generalized Spring-Damper Element)

This element is associated with two physical points located at arbitrary locations in global space. Each of these points is assigned six degrees of freedom, three translational displacements (or velocities), and three rotational displacements (or velocities).

A full complement of stiffness and damping coefficients can be input to allow the modeling of fully coupled load paths. The units of the stiffness and damping coefficients are:  $lb_F/in.$ ,  $lb_F/rad$ ,  $in.-lb_F/in.$ ,  $in.-lb_F/rad$ ,  $lb_F-sec/in.$ ,  $lb_F-sec/rad$ ,  $in.-lb_F-sec/rad$ .

Damping can be specified directly via the coefficient input or can be specified in terms of a structural Q-factor and a selected frequency. For the latter case, the TETRA program computes the damping matrix by multiplying the stiffness matrix by the proportionality term  $1/\omega Q_F$ , where  $\omega$  is the selected frequency in radians/sec, and  $Q_F$  is the Q-factor. The user inputs the frequency with the units cycles/sec and TETRA converts this to radians/sec.

| Page  |      | of |  |
|-------|------|----|--|
| NAMEL | .IST |    |  |
| Туре  | D-1  |    |  |

109

# TYPE 1 PHYSICAL CONNECTING ELEMENT (GENERALIZED SPRING-DAMPER ELEMENT)



| $ \overline{\mathcal{Q}} $ |        |        |          |
|----------------------------|--------|--------|----------|
| \$END                      |        |        |          |
| \$LIST3                    | •      |        |          |
| ITYPE=1,                   |        |        |          |
| ILEM=                      |        | elemen | t number |
| I-end                      |        | J-end  |          |
| point                      | number | point  | number   |
| JT=                        | ,      |        | ,        |

|                               | STIFFNESS MATRIX DEFINITION |   |                |   |                |        |      |        |                |      |                |
|-------------------------------|-----------------------------|---|----------------|---|----------------|--------|------|--------|----------------|------|----------------|
| I-END                         |                             |   |                |   |                |        | J-E  | ND     |                |      |                |
| GLOBAL DIRECTION DISPLACEMENT |                             |   |                |   | GL0B/          | AL DIR | ECTI | ON DIS | PLACE          | MENT |                |
| 1                             | 2                           | 3 | 4              | 5 | 6              | 1      | 2    | 3      | 4              | 5    | 6              |
| Z                             | θ,                          | Y | θ <sub>z</sub> | X | θ <sub>x</sub> | Z      | θ,   | Y      | θ <sub>z</sub> | X    | θ <sub>x</sub> |

| Global | Di                         | r. Forces                                                                                       |
|--------|----------------------------|-------------------------------------------------------------------------------------------------|
| I-END  | 1<br>2<br>3<br>4<br>5<br>6 | F<br>F <sup>Z</sup><br>F <sup>B</sup> y<br>F <sup>B</sup> z<br>F <sup>X</sup><br>F <sup>X</sup> |
| J-END  | 1 2 3 4 5 6                | FZ<br>FBY<br>FY<br>FBZ<br>FX<br>FX                                                              |

| SPRING(1,1)=                           |    |             |     |    | •           |           |          |            |          |            |
|----------------------------------------|----|-------------|-----|----|-------------|-----------|----------|------------|----------|------------|
|                                        | ,  | ,           | _•_ | •  | <u></u>     | ,         | ,        | •          | ,        | ,          |
| ''-                                    | ·  | ,           | •   | ,  | •           | ·         | •        | •          | •        | ,          |
|                                        |    |             |     |    |             |           |          |            |          |            |
| <u>''</u>                              |    | •           |     | •_ | •           | ,         |          | ,          | ,        | ,          |
| ······································ |    |             |     |    |             |           |          |            |          |            |
| '                                      | '- | <b>'-</b> - | •   | •- | <b></b> '   | ·         | •        | '          | ,-       | <b></b> ,  |
|                                        |    |             |     |    |             |           |          |            |          |            |
| ''                                     | •  | •_          | •   |    | '           | ,         |          | °          | <b>•</b> | _,         |
| <u> </u>                               |    | ,           | •   | •  | •           | <b></b> ' | ,        | ,          | ,        | _,         |
|                                        | '  | •           | ·-  | ,  | •           | '         | <u>,</u> | •          | ,        | ,          |
| ··                                     |    | '           | _•_ | •  | <b>'-</b> - | '         | •        | •          | ,        | ,          |
|                                        |    | ,           | •   | '  | '           | '         | ,        |            | ,        | <b>_</b> , |
| ''-                                    | '  | <b></b> '   | •   | _• | •           | '         | ,        | <b>-</b> - | '        | _,         |

| Page     | of |  |
|----------|----|--|
| NAMELIST |    |  |
| Type D-2 |    |  |

# TYPE 1 PHYSICAL CONNECTING ELEMENT (GENERALIZED SPRING-DAMPER ELEMENT) (Continued)

Option 2: For damping based on damping matrix definition, enter the following:

|                           | DAMPING MATRIX DEFINITION |   |    |   |       |        |                |        |      |   |                |
|---------------------------|---------------------------|---|----|---|-------|--------|----------------|--------|------|---|----------------|
| I-END                     |                           |   |    |   |       |        | J-E            | ND     |      |   |                |
| GLOBAL DIRECTION VELOCITY |                           |   |    |   | GL0B/ | AL DIR | ECTI           | N VELO | CITY |   |                |
| 1                         | 2                         | 3 | 4  | 5 | 6     | 1      | 2              | 3      | 4    | 5 | 6              |
| Ž                         | θ <sub>ν</sub>            | Ý | ėz | X | éx    | Ż      | ė <sub>y</sub> | Ý      | ėz   | X | ė <sub>x</sub> |

| Global | Dir.                       | . Forces                                                                                         | DAMP(1 | .1)= | •                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |     |                                 |             |                |
|--------|----------------------------|--------------------------------------------------------------------------------------------------|--------|------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----|---------------------------------|-------------|----------------|
| I-END  | 1<br>2<br>3<br>4<br>5<br>6 | FZFBYFSXFXFXFXFXFXFXFXFXFXFXFXFXFXFXFXFXFXFX                                                     |        | '    | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ | ·                                     | '                 | <br>- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ - \ \ - \ - \ - \ - \ - \ - \ - \ - \ - \ - \ - \ - \ - \ - \ - \ - \ - \ - \ - \ - \ - \ - \ - \ - \ - \ - \ - | _ '<br>'<br>' | ''' | _ '<br>_ '<br>_ '<br>_ '<br>_ ' | '<br>'<br>' |                |
| J-END  | 1<br>2<br>3<br>4<br>5<br>6 | F <sub>Z</sub><br>F <sub>B</sub> y<br>Fy<br>F <sup>B</sup> Z<br>F <sup>X</sup><br>F <sup>X</sup> |        | '    | ·                                     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · · · · · · · · · · · · · · · · · · | - •<br>- •<br>- • | <br>·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |     |                                 | '<br>'<br>' | '.<br>'.<br>'. |

#### TYPE E INPUT

## Type 2 Physical Connecting Element (Space Link - Damper Element)

This element is used to model load paths which have no local moment capability. The load paths are associated with two physical points located at arbitrary locations in global space. Each of these points is assigned three translational degrees of freedom. The user inputs the cross section areas (in.2), and Young's modulus (lb/in.2), and TETRA uses this information along with the coordinates of the two connecting points to calculate the stiffness matrix. The damping can be defined either in terms of translational (dashpot) damping directed along the axis of the link or by proportional damping. In the latter case, the user inputs a structural Q-factor and a selected frequency and the TETRA program computes the damping matrix.

| Page     | of |  |
|----------|----|--|
| NAMELIST |    |  |
| Type E   |    |  |

### TYPE 2 PHYSICAL CONNECTING ELEMENT

### (SPACE LINK-DAMPER ELEMENT)

| \ <del>2</del> /                                                | ∠ (vertical ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓                 |
|-----------------------------------------------------------------|-------------------------------------------------------------------|
| \$ END                                                          |                                                                   |
| \$LIST <sup>3</sup>                                             | Space Link (Truss)                                                |
| ITYPE=2,                                                        |                                                                   |
| element number                                                  | I                                                                 |
| ILEM=                                                           | Y (horizontal                                                     |
| point number point number                                       | direction)                                                        |
| 3T.                                                             | X (axial direction, positive                                      |
| Area(in <sup>2</sup> )                                          | forward)                                                          |
| TAREA=,                                                         |                                                                   |
| Young's Modulus (psi)                                           |                                                                   |
| TYOUNG=                                                         |                                                                   |
| 1=damping                                                       |                                                                   |
| O=no damping IDAMP=, (O assumed)                                |                                                                   |
| 1 DAMP, (0 assumed)                                             |                                                                   |
| If IDAMP=1, complete the input for on                           | e of the following two options:                                   |
| Option 1: For damping based on Q-fac following:                 | tor and selected frequency, enter the                             |
| Q-factor                                                        |                                                                   |
| QELEM=,                                                         |                                                                   |
| frequency (hertz)                                               |                                                                   |
| QFREQ=,                                                         |                                                                   |
|                                                                 |                                                                   |
| Option 2: For damping based on the t the axis of the link eleme | ranslational damping coefficient c along nt, enter the following: |
| C (lb-sec/in)                                                   | ·                                                                 |
| TDRATE=,                                                        |                                                                   |
|                                                                 |                                                                   |

#### TYPE F INPUT

# Type 3 Phsycial Connecting Element (Rub Element)

The rub element allows the mathematical modeling of the nonlinear tip rub that includes the dead band displacement internal prior to closure between the rotor and case (or between rotor and rotor). The user enters the radial spring rate K which represents the local case distortion and the blade compliance, the structural clearance  $\varepsilon_0$  (mils), and damping coefficient C (lb-sec/in) if so desired. This element can be used to model rotor-to-case rubs as well as rotor-to-rotor rubs. In the latter case, the I-end must be on the inner rotor and the J-end must be on the outer rotor. In the former case, the I-end must be on the rotor and the J-end on the case.

Page \_\_\_ of \_\_\_ NAMELIST Type F

### TYPE 3 PHYSICAL CONNECTING ELEMENT



| 2/                           | •        |                                                                                                                                                  |
|------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| \$ END<br>\$LIST3<br>ITYPE=: | 3        |                                                                                                                                                  |
| ILEM=                        | ,        | ,element number                                                                                                                                  |
| I-er                         |          | J-end<br>point number                                                                                                                            |
| JT=                          |          | · · · · · · · · · · · · · · · · · · ·                                                                                                            |
| Note:                        |          | case rub, I-end must be on rotor and J-end must be on case. rotor rub, I-end must be on inner rotor and J-end must be rotor.                     |
| SK=                          |          | ,Case or outer rotor (if rotor-rotor rub) radial spring constant K (lb/in) (becomes active on closure)                                           |
| DBAND=_                      | <u> </u> | ,Radial dead band $\epsilon_{\rm O}$ (mils) between rotor and case (if rotorcase rub) or between inner rotor and outer rotor (if rotorrotor rub) |
| CC=                          |          | ,Rub element damping coefficient C (lb-sec/in) (becomes active<br>on closure)                                                                    |

#### TYPE G1, TYPEG2 and TYPE G3 INPUTS

## Type 4 Physical Connecting Element (Engine Support-Links Element)

The engine support element is a multipoint, multidirection variable geometry element that provides the capability to model the complex load paths between the engine case and the pylon or ground and thus allows for the direct modeling of actual engine mount structures. In addition, this element couples the flexible and rigid body-centerline modal subsystem that represents the engine case to the support links that comprise the mounting system through the case flexibility. The case flexibility is described by three flexibility rates SKV, SVH and SKA. SKV is the vertical direction case distortion flexibility rate (in./lb).

SVH is the horizontal direction case distortion flexibility rate (in./1b). SKA is the axial direction case distortion flexibility rate (in./1b).

These rates are the reciprocals of the case spring rates that represent local distortion of the engine case under mount reaction loads. Multipliers, defined by the input values AM, BM, CM, DM, EM, and FM, are used to proportion the above flexibility rates per the diagram shown on the Type G-2 input sheet. If it is desired to cut a load path at a case attach point J or K in a given direction, then the applicable multiplier can be set equal to zero. The load paths between the engine case and the pylon or ground can be defined with up to 8 link elements. In defining these load paths, no more than 4 distinct points can be specified on the pylon or ground side. This means that more than a single link may be used to connect a case point to a pylon or ground point. The coordinates for the points that correspond to the J and K points on the case are defined on the Type B input sheet if these points are connected to links. The damping is defined by a structural Q-factor and a selected frequency. These data are used by TETRA to compute the damping matrix based on stiffness matrix proportionality.

### TYPE 4 PHYSICAL CONNECTING ELEMENT (ENGINE SUPPORT-LINKS ELEMENT)

Some example configurations that can be modeled with the type 4 element:



| \$ END<br>\$LIST3<br>ITYPE=4,<br>ILEM=,      | element number                                 |                   |              |          |
|----------------------------------------------|------------------------------------------------|-------------------|--------------|----------|
|                                              | J-end<br>point number<br>(Case point)          |                   |              |          |
| JT=                                          |                                                |                   |              |          |
| Point I is attached to subsystems or ground. | subsystem. Points J                            | and K can connect | to link load | paths or |
|                                              | ertical direction cas<br>lexibility rate (i    |                   |              |          |
|                                              | orizontal direction c<br>lexibility rate (i    | _                 |              |          |
|                                              | kial direction case d<br>lexibility rate (in/l |                   |              |          |

### TYPE 4 PHYSICAL CONNECTING ELEMENTS (ENGINE SUPPORT-LINKS ELEMENT) (Continued)

Enter multipliers a, b, c, d, e, and f to proportion the spring rates:

| $\sqrt{2}$ |   |
|------------|---|
| AM=        |   |
| BM=        | , |
| CM=        | , |
| DM=        | , |
| EM=        | , |
| FM=        | , |

|      | POINT |   |
|------|-------|---|
| Rate | 7     | K |
| Kv   | a     | С |
| KH   | Ь     | d |
| KA   | е     | f |

This restraint must be followed (zero values are permissible).

Input one line for each link load path (maximum of 8). If no link load paths, omit this input.

| Case side point number (must correspond to case point J or K) | Other side point number (no more than 4 distinct point numbers) | Area (in <sup>2</sup> ) | Young's<br>Modulus<br>psi |
|---------------------------------------------------------------|-----------------------------------------------------------------|-------------------------|---------------------------|
|---------------------------------------------------------------|-----------------------------------------------------------------|-------------------------|---------------------------|

| TLP(1,1)= |                                       |                                        |  |
|-----------|---------------------------------------|----------------------------------------|--|
| ,         | ,                                     | ,                                      |  |
| ,         |                                       | •                                      |  |
| ,         | ,                                     | ······································ |  |
|           | ,                                     | •                                      |  |
|           | ,                                     | •                                      |  |
| ,         | ,                                     |                                        |  |
| <u> </u>  | · · · · · · · · · · · · · · · · · · · | ,                                      |  |
| ,         | ,                                     | ,                                      |  |

Page of \_\_\_ NAMELIST Type G-3

### TYPE 4 PHYSICAL CONNECTING ELEMENT (ENGINE SUPPORT-LINKS ELEMENT) (Continued)

Enter the following only if you want damping based on Q-factor and selected frequency. If no damping desired, omit this input.

|        | Q-fact    | tor      |
|--------|-----------|----------|
| QELEM: | =         | <u> </u> |
|        | frequency | (herz)   |
| OFREO: | =         | ,        |

#### TYPE H1 AND TYPE H2 INPUTS

## Type 5 Physical Connecting Element (Uncoupled Point Spring - Damper Element)

This input allows the connection of two points with a set of uncoupled springs and dampers. These spring/dampers are typically used to connect the centerlines of beam-like modal subsystems and provide load paths in three translational and two rotational directions. Because of the lack of load path coupling, good modeling practice infers that the points being connected by this element should be coincident in space. Damping can be either specified directly via the coefficient input or can be specified in terms of a structural Q-factor and a selected frequency.

# TYPE 5 PHYSICAL CONNECTING ELEMENT (UNCOUPLED POINT SPRING-DAMPER ELEMENT)

I and J points are coincident.

(axial direction)

(axial direction, positive forward)

Z (vertical direction)

y

(axial direction)

y

(axial direction)

y

(axial direction)

|                         | positive forward)     |
|-------------------------|-----------------------|
| $\overline{\mathbf{v}}$ |                       |
| \$END                   |                       |
| \$LIST3                 |                       |
| ITYPE=5,                |                       |
| ILEM=                   | _,element number      |
| I-end                   | J-end                 |
| point number            | point number          |
| JT=                     | ·•                    |
| Enter the follow        | ing spring constants: |
| XS =                    | , (O assumed)         |

K<sub>x</sub>(1b/in)
K<sub>y</sub>(1b/in)
K<sub>z</sub>(1b/in)
K<sub>z</sub>(1b/in)
K<sub>θy</sub>(in-1b)
K<sub>θz</sub>(in-1b)
K<sub>θz</sub>(in-1b)

| xs = _ | , | (0 | assumed) |
|--------|---|----|----------|
| YS = _ | , | (0 | assumed) |
| zs = _ |   | (0 | assumed) |
| TYS =  | , | (0 | assumed) |
| TZS =  | , | (0 | assumed) |

Page \_\_\_ of \_\_\_ NAMELIST Type H-2

| ,                                                   | 1=damping<br>0=no damping<br>IDAMP=, (0 assumed)                                     |
|-----------------------------------------------------|--------------------------------------------------------------------------------------|
|                                                     | If IDAMP=1, complete the input for one of the following two options:                 |
|                                                     | Option 1: For damping based on Q-factor and selected frequency, enter the following: |
|                                                     | Q-factor QELEM= frequency (hertz) QFREQ= ,                                           |
|                                                     | Option 2: For damping based on damping coefficient definition, enter the following:  |
| $C_x \left(\frac{1b-sec}{in}\right)$                | XD =, (0 assumed)                                                                    |
| $C_y \left(\frac{1b-sec}{in}\right)$                | YD =, (0 assumed)                                                                    |
| $C_z \left(\frac{1b-sec}{in}\right)$                | ZD =, (0 assumed)                                                                    |
| $C_{\Theta x}(\frac{\text{in-1b-sec}}{\text{rad}})$ | TYD=, (0 assumed)                                                                    |
| $C_{\theta z}(\frac{\text{in-lb-sec}}{\text{rad}})$ | TZD=, (0 assumed)                                                                    |

### Restart and Time Integration Input (Type I)

If the run is a restart run, the user must input the variable ISTART = 1 (otherwise this variable should be set to zero or omitted). Also, if the run is a restart run, an additional input file is required - namely, the restart file which was generated by the original run. This restart file is read in on file code 22, so the user must assign the restart file to File 22 (@ ASG control card) prior to the run.

The user must choose for this restart time (RTIME input variable) one of the times for which output was printed on the original run (these are the only times for which restart information was written on the restart file). If the user omits the RTIME variable, the program will restart at the final time which was printed out on the original run (provided the original run didn't terminate prematurely).

Next, the user must input the time step (DELTA input variable). The time step should be made equal to about 1/40 of the smallest period of oscillation. The run always begins at time equal zero and then time accumulates. The final time (TFINAL input variable) must also be inputted so that the program knows when to stop. It is recommended that the user choose TFINAL such that the program will do a small number of time steps until the user is sure that his or her input is correct, so as to avoid costly no good runs.

Next, the user must input the print muitiple (IPRMUL variable). This value governs the number of time steps that get printed out and the number that gets written onto the output restart file. If IPRMUL = 100, then one out of every 100 time steps computed is printed out and is written onto the restart file. Similarly, the plot multiple (IPLMUL) governs the number of time steps that get written onto the output plot file. If IPLMUL = 10, then one out of every 10 time steps is written onto the plot file.

Example: If DELTA = 0.0001 second, TFINAL = 0.1 second, IPRMUL = 100, and IPLMUL = 5, then computations are made for 1001 times (starting with time = 0 and ending with time = 0.1 second). Eleven times are printed and written onto the restart file (0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07,

0.08, 0.09, and 0.1), and 201 times are written on the output plot file (starting at time = 0 and ending at time = 0.1).

It is recommended that the user pick IPRMUL such that no more than about 10 times are printed, in order to avoid being buried in printed output. The user should pick IPLMUL such that enough times are included to adequately define the curve being plotted (several hundred may be needed). Of course, the larger the value of IPLMUL the smaller the output plot file will be.

| Page  |     | of |  |
|-------|-----|----|--|
| NAMEL | IST |    |  |
| Туре  | I   |    |  |

### RESTART AND TIME INTEGRATION

| <b>2</b>                                        | •                                                                                                                                     |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| \$ END<br>\$LIST4<br>1=Restart Run<br>0=New run |                                                                                                                                       |
| ISTART=                                         | , (O assumed)                                                                                                                         |
| If run is a restart must be supplied.           | run (ISTART=1), an input restart file (file code 22)                                                                                  |
|                                                 | r the restart time. This time must correspond to one of output was printed on the initial run.                                        |
| RTIME=,                                         | Restart time (Program assumes the final time printed for the initial run provided that the initial run didn't terminate prematurely). |
| DELTA=                                          | _, Time step (seconds)                                                                                                                |
| TFINAL                                          | , Final time (seconds)                                                                                                                |
| IPRMUL=                                         | _, Print multiple                                                                                                                     |
| IPLMUL=                                         | _, Plot multiple                                                                                                                      |
| END (Include if this                            | is the last card of a run, otherwise omit.)                                                                                           |

#### Rotor Speed and Rate Input (Type J)

Rotor speed and rate input is required if unbalance forces or gyroscopic forces are present. If unbalance forces and gyroscopic forces are not present, the rotor speed and rate input is not needed. If rotor speed and rate input is not desired, the user can skip the Type J input sheet altogether.

If rotor speed and rate input is desired, the user must specify which rotor is the "independent" rotor (rotor for which the speed and rate history is specified) by setting IROTI to 1 or 2. (Rotor 1 corresponds to subsystems 1, 2, and 3 and Rotor 2 corresponds to subsystems 4, 5 and 6). Then the user must enter the beginning time (BEGTIM) and beginning speed (BEGRPM) for the first speed segment and the ending time and rate for all the speed segments (TRHIS array). If speed and rate input is present, there must be at least one and no more than ten speed segments.

If another rotor is present, the other rotor is referred to as the "dependent" rotor because its speed is a function of the "independent" rotor speed. If a second rotor is present, the user should input the coefficients A, B, C, and D relating the dependent rotor speed Y to the independent rotor speed X, where

$$y = Ax^3 + Bx^2 + Cx + D$$

| Page     | of |  |
|----------|----|--|
| NAMELIST |    |  |
| Type J   |    |  |

#### ROTOR SPEED AND RATE INPUT...

This sheet is required if unbalance forces or gyroscopic forces are desired.

Enter independent rotor number (rotor for which below ending time/rate table is input). Permissible values are 0 (rotor speed and rate not considered), 1 (rotor corresponding to subsystems 1, 2, and 3), and 2 (rotor corresponding to subsystems 4, 5, and 6).

| to subsystems 4, 5, and 6).                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (2)                                                                                                                                                                       |
| IROTI=, (0 assumed)                                                                                                                                                       |
| If IROTI=1 or 2 enter the following:                                                                                                                                      |
| BEGTIM=, Beginning time (seconds) for the first speed segment (applies to independent rotor)                                                                              |
| (applies to independent rotor)  BEGRPM=, Beginning speed (rpm) for the first speed segment (applies to independent rotor)                                                 |
| If IROTI=1 or 2 enter the following table in chronological order (applies to independent rotor) (maximum of 10 segments):                                                 |
| Ending Time Rate (seconds) (rpm/sec)                                                                                                                                      |
| TRHIS(1,1)=                                                                                                                                                               |
| ·<br>                                                                                                                                                                     |
| ,                                                                                                                                                                         |
|                                                                                                                                                                           |
|                                                                                                                                                                           |
|                                                                                                                                                                           |
| ···································                                                                                                                                       |
|                                                                                                                                                                           |
| ······································                                                                                                                                    |
| If a second rotor is present, input the following coefficients relating the second (dependent) rotor speed Y to the independent rotor speed X, where $Y=AX^3+BX^2+CX+D$ : |
| A=, (0 assumed)                                                                                                                                                           |
| B=, (O assumed)                                                                                                                                                           |
| C=, (O assumed)                                                                                                                                                           |
| D=, (0 assumed)                                                                                                                                                           |
|                                                                                                                                                                           |

\$END (Include if this is the last card of a run, otherwise omit.)

Segment 1
Segment 2
Segment 3
Segment 4
Segment 5
Segment 6
Segment 7
Segment 8
Segment 9
Segment 10

#### Unbalance Load Input (Type K Input Sheet)

If unbalance load input is not desired, the Type K input sheet can be skipped altogether. To have unbalance load input, rotor speed input (Sheet J) is needed - otherwise the unbalance load input is ignored. If unbalance loads are desired, the unbalance load input (UNBAL array) must be provided. For each unbalance "birth event" four values must be entered - the time of birth (when the unbalance load becomes active), the point number on the unbalanced rotor (the point must lie on Rotor 1 or Rotor 2), the magnitude of the unbalance in gm-in., and the phase angle Ø which gives the position of the unbalance relative to the horizontal (Y) axis at the time of birth. There can be from zero to a maximum of 20 unbalance birth events.

The unbalance load input is quiete flexible. The time of birth can be the same for different birth events. Also, the same point can be referenced more than once if desired. In this way one could model a point (say, the engine fan) which starts out with a nominal unbalance, and later a very much larger unbalance is introduced (fan blade loss). If more than one unbalance birth event is specified for the same points, the unbalance loads for each birth event are added together to get the total unbalance loads.

If the run is a restart run and unbalance loads were present in the original run, then the unbalance load input present in the original run for those birth events that become active prior to the restart time should be left in for the new run. (Otherwise, the unbalance loads would disappear for the new run.) Additional birth events that became active after the start of the restart run may be added to the UNBAL array input for a restart run, however.



NOTE - to have unbalance loads, must have rotor speed input (type J sheet) - otherwise the unbalance load input is ignored.

If unbalance loads are desired, fill out the following (maximum of 20 lines):

| Time of birth (seconds) | Point number on unbalanced rotor | Magnitude<br>(gm-in) | Phase Angle Ø (degrees)                |
|-------------------------|----------------------------------|----------------------|----------------------------------------|
| V                       |                                  |                      |                                        |
| UNBAL(1,1)=             | •                                |                      |                                        |
|                         | ,                                |                      | ,                                      |
|                         | ·,                               | ,                    | ······································ |
|                         |                                  |                      |                                        |
|                         |                                  | ,                    | ,                                      |
| ,                       |                                  |                      |                                        |
| <u> </u>                | ,                                |                      | ·                                      |
| <del></del> ,           | <u> </u>                         | ,                    |                                        |

If restart run and the time of birth is less than the restart time, then the unbalance load continues active for the restart run. Time of birth can be the same for different birth events. Also, the same point can be referenced more than once if desired.

### P cos wt and P sin wt Load Input (Type L Input Sheets)

If P cos wt and P sin wt loads are not desired the Type L input sheet can be skipped altogether. If desired, the user must supply six values for each P cos wt or P sin wt load (CS array input), as shown on the Type L input sheet. As for the unbalance load input, the same point can be referenced more than once. In this case the loads are added together to get the total load. There can be from zero to a maximum of 20 P sin wt loads.

#### Definitions are as follows:

- P = Force Amplitude (1b or in.-1b)
- $\omega = frequency (hertz)$
- t = time (seconds)

# APPLIED LOADS P\*cos (wt) and P\*sin (wt) LOADS



X (axial direction, positive forward)

If P\*cos ( $\omega t$ ) or P\*sin ( $\omega t$ ) loads are desired, enter the following (maximum of 30 lines):

| POINT<br>NUMBER | TYPE<br>(1=COS<br>2=SIN) | AMPLITUDE<br>P<br>(lb or in-lb)        | FREQUENCY<br>ພ<br>(hertz)             | GLOBAL<br>DIRECTION<br>NUMBER |
|-----------------|--------------------------|----------------------------------------|---------------------------------------|-------------------------------|
| <b></b>         |                          |                                        |                                       |                               |
| CS(1,1):        |                          |                                        |                                       |                               |
|                 | ·,                       |                                        |                                       |                               |
| :               |                          | <del> </del>                           |                                       |                               |
|                 | ''                       | ······································ |                                       |                               |
|                 | ·,                       | · · · · · · · · · · · · · · · · · · ·  |                                       |                               |
| ¹               | ''                       |                                        |                                       |                               |
|                 | )                        | •                                      | · · · · · · · · · · · · · · · · · · · | .,                            |
| ,               | ·                        | ,                                      |                                       | ·                             |

\$END (Include if this is the last card of the run, otherwise omit).

#### Time-Force History Loads (Type M-1 and M-2 Input Sheets)

If time-force history load input is not desired, sheets M-1 and M-2 can be skipped altogether. If desired the user must specify the point number, global direction number, and table number for each time-force history load using the NTF array (see sheet M-1) (values in the NTF array must be integers). The table number must be a value between 1 and 10. There can be from zero to a maximum of 30 time-force history loads entered in the NTF array.

Then, for each table number referenced in the NTF array, the array Table (1, 1, NT) is required, where NT is the table number referenced in the NTF array. If the first time-force pair entry in the table is for a time other than zero, then the force is assumed to be zero up to the time of the first table entry. If the last time-force pair entry in the table is for a time less than the final time of the run, then the force is assumed constant and equal to the force for the last table entry for times greater than the last table entry time. A table may have only one time-force pair entry, in which case the force is zero till the time of the entry and afterward equal to the force given in the entry. There can be a maximum of ten time-force pairs in each table.

# APPLIED LOADS TIME-FORCE HISTORY LOADS



| GLOBAL<br>DIRECTION<br>NUMBER | DIRECTION |
|-------------------------------|-----------|
| 1                             | Ζ         |
| 2                             | ΘΥ        |
| 3                             | Υ         |
| 4                             | ΘΖ        |
| 5                             | Χ         |
| 6                             | Θχ        |

If time-force history loads are desired, enter the following (values must be integers) (maximum of 30 lines):

| POINT<br>NUMBER | GLOBAL<br>DIRECTION<br>NUMBER         | TABLE NUMBER<br>NT (VALUE<br>BETWEEN 1 & 10) |
|-----------------|---------------------------------------|----------------------------------------------|
| 27              |                                       |                                              |
| NTF(1,1)=       |                                       | ·                                            |
|                 |                                       | ·•                                           |
|                 | · · · · · · · · · · · · · · · · · · · | ·                                            |
|                 | · · · · · · · · · · · · · · · · · · · |                                              |
|                 |                                       |                                              |
|                 |                                       | ·                                            |
| ,               | ,                                     |                                              |

# APPLIED LOADS TIME-FORCE HISTORY LOADS (Continued)

For each time-force table, enter the following (substitute actual table number in place of NT in subscript below) (maximum of 10 tables, and maximum of 10 time-force pairs in each table):

| TIME      | FORCE         |
|-----------|---------------|
| (seconds) | (1b or in-1b) |

| 2/            |                         |  |
|---------------|-------------------------|--|
| TABLE (1      | .1.NT)=                 |  |
|               | <b>,</b> , <b>,</b> , , |  |
|               | ,                       |  |
|               | •                       |  |
|               |                         |  |
|               |                         |  |
|               | ,                       |  |
|               | ,                       |  |
|               | ,                       |  |
|               |                         |  |
|               |                         |  |
| <del></del> ~ | '                       |  |
|               | ,                       |  |
|               | •                       |  |

\$ END (Include if this is the last card of the run, otherwise omit.)

### Gyroscopic Loads - Type N Input

This input identifies the gyroscopic loading locations. Up to 30 point numbers on the rotors can be entered along with the polar mass moment of intertia (lb-in.<sup>2</sup>) values. Since this input models the cross-axis coupling forces associated with Coliolis evaluation, both the vertical and horizontal subsystems must be included for the rotor(s).

| Page     | _ of |
|----------|------|
| NAMELIST | 7    |
| Type N   |      |

#### GYROSCOPIC LOADS

Note - to have gyroscopic loads, must have rotor speed input (type J sheet) - otherwise the gyroscopic load input is ignored.

Note - for gyroscopic loading, both the vertical and horizontal subsystems must be included for the rotor(s).

If gyroscopic loads are desired, enter the following (maximum of 30 lines):

| Point<br>Number<br>On Rotor | Polar Moment<br>of Inertia I<br>(lb-in <sup>2</sup> ) |
|-----------------------------|-------------------------------------------------------|
| 2/<br>GYRO(1,1)=            |                                                       |
|                             |                                                       |
|                             |                                                       |
|                             | · · · · · · · · · · · · · · · · · · ·                 |
|                             | ·                                                     |

\$END (Include if this is the last card of the run, otherwise omit.)

#### Plot File Input (Type P-1 and P-2 Input Sheets)

If no output plot file is wanted, the user should set variable IPLOT to 0 and dispense with the rest of input sheets P-1 and P-2. If, however, IPLOT is set to 1 or omitted, then an output plot file will be produced, and the user should enter the desired input from pages P-1 and P-2.

The plot file size would in many cases be excessive if all the data that conceivably might be desired were written onto the plot file. The NTF (see sheet P-1) and the NEPD (see sheet P-2) input arrays were added for this reason.

The NPD array allows the user to select the point and direction pairs for which the coordinates, displacements, velocities, and modal forces are to be written onto the output plot file. If the user doesn't want these values for any point and direction pairs, then the NPD array should be omitted. A maximum of 50 point and direction pairs may be specified.

The NEPD array allows the user to select the physical connecting element number, point number on this element, and direction number for which the physical connecting element forces are to be written onto the output plot file. Again, if the user doesn't want any such output, he should omit this array. A maximum of 50 element, point and direction trios may be specified.

In addition, certain other data is always written to the output plot file (provided an output plot file is generated). This data includes the time, independent and dependent rotor speed (see discussion of Type J input sheet), independent and dependent rotor angular displacement, and the relative displacement magnitude, clearance, and force magnitude for all rub elements (Type 3 physical connecting elements) present (if any).

### DATA FOR PLOT FILE



| GLOBAL<br>DIRECTION<br>NUMBER | DIRECTION |
|-------------------------------|-----------|
| 1                             | Ζ         |
| 2                             | θΥ        |
| 3                             | Υ         |
| 4                             | θΖ        |
| 5                             | Χ         |
| 6                             | Θχ        |

0=no plot file l=plot file produced

IPLOT= (1 assumed)

Enter the following points and directions (if any) for which the coordinates, displacements, velocities, and modal forces are to be written onto the plot file (values must be integer) (maximum of 50 lines):

| POINT  | GLOBAL<br>DIRECTION |
|--------|---------------------|
| NUMBER | NUMBER              |

| 2/       |      | • |
|----------|------|---|
| NPD(1    | ,1)= |   |
|          | •    | • |
|          | ,,   | , |
|          | ,    | , |
|          | ,    | , |
| <u>·</u> | •    | , |
|          |      |   |
|          | ,*   | · |
|          | ,    | · |
|          |      |   |

# DATA FOR PLOT FILE (Continued)

Enter the following physical connecting elements, points, and directions (if any) for which the physical connecting element forces are to be written onto the plot file (values must be integer) (maximum of 50 lines):

| PHYSICAL<br>CONNECTING<br>ELEMENT<br>NUMBER | POINT<br>NUMBER | GLOBAL<br>DIRECTION<br>NUMBER |
|---------------------------------------------|-----------------|-------------------------------|
|---------------------------------------------|-----------------|-------------------------------|

| 2/        |        |    |   |
|-----------|--------|----|---|
| NEPD(1,1) | )=     |    |   |
|           | ,      | ·, |   |
|           | ,<br>, | ,, | _ |
|           | ,      |    |   |
|           | ,      | ·  |   |
|           | ,      | ,  |   |
|           | '<br>' |    |   |
|           | 9      | •  |   |

\$END (Include if this is the last card of the run, otherwise omit.)

### 6.0 NASTRAN/TETRA INTERFACE: MODAL INPUT GENERATOR

The TETRA program was written so that its input information is the type of information readily available to an engineer. As noted in Section 3.0, the required information consists of geometry, frequency, mode shapes and modal potential energy for each of the subsystems considered. Depending on the application, these data can be determined experimentally or obtained from an analysis program. At the General Electric Company, the VAST program is commonly used to provide the information. This program is specifically tailored to analyze vibrations of axisymmetric structures and, as such, it represents a logical choice for the generation of this input data. If a finite element model is needed to provide the mode shapes, the MASS program, which has been developed by General Electric, is used. Both MASS and VAST have postprocessors available to transform the program results into the format required by TETRA. These particular programs have been modified to conform to the TETRA requirements, but their basic structure has been used for many years at General Electric for several postprocessing activities.

One of the terms of this contract was to code a similar postprocessor for NASTRAN level 17.5 as used by NASA on the UNIVAC 1100/42 computer system.

This program has been written, debugged and successfully tested for the TETRA demonstrator case. Instructions on the use of this program are contained later in this section, but an overall description is given at this point.

The information needed for the TETRA modal subsystem input can be found in the NASTRAN output. This fact guided us to write a program which reads this output, stores the variables which will be of interest and then, through a set of user responses in an interactive mode, the program selects the specific data required, formats it correctly, and writes it on another file.

This program can generate TETRA modal subsystem input for the vertical and horizontal plane subsystems (Numbers 1, 2, 4, 5, 7, and 8) (input sheets

C-1, C-2, and C-3) and the case torsional subsystem (Number 10) (input sheets C-7, C-8, and C-9). The program cannot, however, generate modal subsystem input for the rigid body subsystems (Numbers 3, 6, and 9) (input sheets C-4, C-5, and C-6) or for the pylon subsystem (Number 11) (input sheets C-10, C-11, and C-12).

Three fundamental rules were followed during the coding of this program.

- 1. It was written in time-sharing ASCII for convenience in setting up TETRA files in an interactive fashion. Our experience at General Electric has shown that this method of operation is far more efficient than batch programming for this task. Thus, although NASTRAN runs may require large core and time limits the postprocessor runs will be short.
- Simple, straight-forward FORTAN coding was used throughout. This decision was enforced as an aid for possible future enhancements. As the program is now written engineers with only moderate programming experience should have no trouble in modifying the routines to suit their own needs. There are only two exceptions to this. In the first part of the program, the NASTRAN output is read and copies directly to another file. This is done only to avoid BACKSPACE problems associated with the UNIVAC system. If the user has copied this file already, he/she need not copy it again. The second area of "awkward logic" is the coding required to read left justified integers in the NASTRAN output. This portion of the code reads the integers twice, once as an integer and once as a character array and actually counts the number of blanks in the field. Outside of these items, all coding is straight-forward.
- 3. The user response questions were designed to permit a variety of applications. For example, although the NASTRAN run might calculate 20 frequencies, the user might need only Modes 1, 2, and 6. This selection can be easily accomplished.

In summary, the NASTRAN/TETRA interface program represents a working, easily modifiable program based on the approaches we have found most satisfactory at the General Electric Company.

The following section summarizes the NASTRAN 17.5 postprocessor operation in an interactive mode and also includes a sample computer-operator "conversation."

## 6.1 NASA 17.5 Generated Modal Data File

Below is a sample interactive computer-operator "conversation" initiated by running the NASTRAN/TETRA interface program. From this conversation the interface program knows what values to obtain from the NASTRAN 17.5 output file, and after obtaining these values the interface program generates a file containing TETRA modal subsystem input. The below example demonstrates the use of the interface program to generate modal subsystem input for subsystem 7 (case vertical plane subsystem) and subsystem 8 (case horizontal plane subsystem) for the demonstrator model. Following the below computer-operator "conversation" is a listing of the resulting interface program output file which consists of TETRA modal subsystem input.

RUN

N A S T R A N -- T E T R A INTERFACE PROGRAM

SOME HELPFUL INFORMATION:
THE ORIGINAL NASTRAN OUPUT MUST BE ASSIGNED
TO FILE CODE 28

TO ACCOMODATE THE UNIVAC SYSTEM REQUIREMENTS
THIS FILE MUST BE COPIED TO ANOTHER ASCII FILE
THIS FUNCTION CAN BE ACCOMPLISHED BY THIS PROGRAM
BY RESPONDING WITH A ONE (1) TO THE QUESTION CONCERNING
WHETHER OR NOT YOU DESIRE AN OUTPUT READ/WRITE

IF YOU EXERCISE THE READ/WRITE OPTION THE ORIGINAL NASTRAN OUTPUT FILE WILL BE COPIED TO FILE CODE 27
THIS FILE CAN BE SAVED OFF ONTO A PERMANENT FILE FOR FUTURE USE ONCE THE FILE HAS BEEN SAVED THERE IS NO REQUIREMENT FOR FUTURE READ/WRITE(S). WHEN FURTHER PROCESSING OF THE NASTRAN OUTPUT FILE IS DESIRED

ALL OUTPUT FROM THIS INTERFACE PROGRAM IS ON TEMPORARY FILE CODE 29

```
TYPE Ø TO SKIP NASTRAN OUTPUT READ/WRITE
> 1
INPUT:
 SUBSYSTEM NUMBER
 NUMBER OF FREQUENCIES DESIRED
 0-FACTOR
>7,3,15
INPUT FREQUENCY NUMBERS DESIRED
>2,3,4
INPUT NUMBER OF GRID POINTS YOU WISH TO ELIMINATE
>7
INPUT THE GRID POINTS TO BE ELIMINATED
>34,35,100,101,102,103,9000
INPUT IDENTIFICATION TITLE
      VERTICAL PLANE SUBSYSTEM FOR DEMONSTRATOR MODEL
> CASE
THERE WERE
           5 JOINTS
              3 EIGENVALUES
THERE WERE
THERE WERE
              3 EIGENVECTORS
WRITTEN TO THE TETRA INPUT FILE
TYPE 1 TO GENERATE ANOTHER SUBSYSTEM INPUT FILE
>1
INPUT:
 SUBSYSTEM NUMBER
 NUMBER OF FREQUENCIES DESIRED
 Q-FACTOR
>8,8,15
INPUT FREQUENCY NUMBERS DESIRED
INPUT NUMBER OF GRID POINTS YOU WISH TO ELIMINATE
>7
INPUT THE GRID POINTS TO BE ELIMINATED
>34,35,100,101,102,103,9000
INPUT IDENTIFICATION TITLE
>CASE HORIZONTAL PLANE SUBSYSTEM FOR DEMONSTRATOR MODEL
THERE WERE 5 JOINTS
THERE WERE
              3 EIGENVALUES
THERE WERE
              3 EIGENVECTORS
WRITTEN TO THE TETRA INPUT FILE
TYPE 1 TO GENERATE ANOTHER SUBSYSTEM INPUT FILE
>
FOLLOWING IS A LISTING OF THE OUTPUT FILE FROM THIS
INTERFACE PROGRAM (FILE CODE 29):
SEND
$LIST2
TITLE= 'CASE - VERTICAL PLANE SUBSYSTEM FOR DEMONSTRATOR MODEL
ISUB= 7,
XREF=0,
YREF=Ø,
ZREF=0,
PTS(1,1) =
```

```
Ø.
   1,
          Ø.
                      Ø.
        -10.0000,
   2,
                      ø.
                                   ø.
        -90.0000,
   3,
                                   Ø.
                      Ø.
  33,
       -100.0000,
                                   Ø.
                      Ø.
  37,
        -50.0000,
                                   Ø.
                      Ø.
\langle MODES(1,1) =
1.250911E 02, 9.999440E 01,15, 1,
1.588929E 02. 6.399970E 01,15. 1.
3.064352E 04, 2.379934E 06,15, 0,
VH(1,1,1)=
 9.999580E-01, 6.151813E-07,-4.999698E 00,-6.182194E-04,
 9.999628E-01, 6.235140E-07, 2.999931E 01, 9.999146E 01,
 9.999621E-01.-6.431300E-07.-2.999929E 01. 9.999298E 01.
 9.99957@E-@1,-6.347973E-@7, 4.999698E @0, 0.
 1.0000000E 00,-9.808070E-09, 3.039837E-06,-1.499972E 03,
VH(1,1,2) =
-9.999996E-01, 2.0000014E-02, 8.067115E 00,-4.571677E 01,
-7.999962E-01, 2.000012E-02,-1.095825E 01,-2.984927E 02,
 7.9999665-01, 2.0000125-02,-1.095826E 01, 2.070593E 02,
 1.6000000E 00, 2.000014E-02, 8.067120E 00, 0.
 1.945323E-07, 2.000014E-02, 6.715440E-01,-4.571713E 01,
\forall H(1,1,3) =
 1.0000000E 00,-3.121830E-02,-3.00045ZE 05, 2.654122E 06,
 6.116836E-01,-3.027587E-02,-9.671252E 05, 1.380302E 07,
 6.116836E-01, 3.027587E-02, 9.671252E 05, 8.655026E 06,
 1.000000E 00, 3.121830E-02, 3.000452E 05, 0.
-7.185308E-01,-8.364795E-15, 0.
                                          , 6.802237E 07,
$END
$LIST2
TITLE= 'CASE HORIZONTA'L PLANE SUBSYSTEM FOR DEMONSTRATOR MODEL
XREF=0,
YREF = Ø.
ZREF=Ø,
PTS(1,1) =
   1 .
                      Ø.
   2,
        -10.0000,
                                   Ø.
   3,
        -90.0000,
                      Ø.
                                   Ø.
  33,
       -100.0000,
                      Ø.
                                   Ø.
        -50.0000.
                                   Ø.
  37,
                      Ø.
XMODES(1,1) =
1.250911E 02, 9.999440E 01,15, 1,
1.588929E 02. 6.399970E 01.15, 1.
3.064352E 04, 2.379934E 06,15, 0,
VH(1,1,1)=
 9.999580E-01, 6.151813E-07.-4.999698E 00,-6.182194E-04,
 9.999628E-01, 6.235140E-07, 2.999931E 01, 9.999146E 01,
 9.999621E-01:-6.431300E-07:-2.999929E 01: 9.999298E 01:
 9.99957ØE-01.-6.347973E-07. 4.999698E 00. 0.
 VH(1,1,2) =
-9.999996E-01, 2.0000014E-02, 8.067115E 00,-4.571677E 01,
-7.999962E-01, 2.000012E-02,-1.095825E 01,-2.984927E 02,
7.999966E-01, 2.000012E-02,-1.095826E 01, 2.070593E 02,
 1.0000000E 00, 2.000014E-02, 8.067120E 00, 0.
 1.945323E-07, 2.000014E-02, 6.715440E-01,-4.571713E 01,
VH(1,1,3)=
 1.000000E 00,-3.121830E-02,-3.000452E 05, 2.654122E 06,
6.116836E-01,-3.027587E-02,-9.671252E 05, 1.380302E 07,
6.116836E-01, 3.027587E-02, 9.671252E 05, 8.655026E 06,
 1.005566E 00, 3.121830E-02, 3.000452E 05, 0.
-7.185308E-01,-8.364795E-15, Ø.
                                           6.802237E 07,
```

### 7.0 DEMONSTRATOR CASE

## Imput Setup

The results obtained with a demonstrator model that represents the engine system shown in Figure 54 will now be presented. The straight lines shown for the rotor and case in this figure represent segmented beam centerline elements that include both stiffness and mass properties. Free-free modal data for the rotor and case subsystems along with physical spring-damper connecting element data were input to the TETRA time transient computer program and solutions were obtained for various rotor speed and rotor unbalance conditions.

Modal data based on planar finite element models of the total system shown in Figure 54 and on the free-free rotor and casing subsystems was computed with the VAST program. In the former case, a frequency domain modal analysis was used to establish the steady-state frequency response of the total system and in the latter case, the TETRA program was used to synthesize the free-free modal data and the physical connecting element data and to predict the time domain response for the combined system.

Spectral analysis and a comparison of the TETRA and frequency domain solutions indicated that TETRA had correctly synthesized the modal and physical data to predict the time transient response for the combined system.

The frequencies for the free-free subsystem modes used in the TETRA analysis are shown in Table III. Eight generalized coordinates, corresponding to these frequencies, were used to define the time response for the total system, which has 40 degrees-of-freedom. Therefore, the dimensionality of the model has been reduced by 80%.

Inspection of Table III shows that the smallest period of oscillation for the subsystem modes is equal to 1.0/510.62 = 0.001958 sec. Accounting for the stiffening effect of the physical connecting springs, a time step value that is considerably less than 0.001958 second must be used for the numerical integration that will be performed with the TETRA program. In practice, the time step should be made equal to about 1/40 of the smallest period of oscillation for the subsystem modes.

 $1/40 \times .001958 = 4.895 \times 10^{-5}$ 



## PHYSICAL CONNECTING ELEMENTS

Spring 1  $0.5 \times 10^6$  lb/in.

Spring 2  $0.5 \times 10^6$  lb/in.

Spring 3  $1.0 \times 10^6$  lb/in.

Spring 4  $1.0 \times 10^6$  lb/in.

POINT 1 IS THE GLOBAL ORIGIN (X=Y=Z=O) FOR THE TETRA MODEL.

PHYSICAL POINT NUMBERS 1,2,37, ETC. IDENTIFIED.

Figure 54. 40 DOF Finite Element Model for Demonstrator.

On this basis a time step of =  $50 \times 10^{-6}$  seconds was selected.

| Table III. | Frequencies | * for  | the F | ree-Fre | ee Modal  |
|------------|-------------|--------|-------|---------|-----------|
|            | Subsystems  | Used i | n the | TETRA   | Analysis. |

| Ro    | tor    | Cas   | е      |
|-------|--------|-------|--------|
| cpm   | Hz     | cpm   | Hz     |
| 99.3  | 1.655  | 125.1 | 2.085  |
| 120.8 | 2.013  | 159   | 2.65   |
| 10065 | 167.75 | 30367 | 510.62 |
| 16851 | 280.85 |       |        |
| 26425 | 440.42 |       |        |

<sup>\*</sup> Free-Free Modal Data Obtained with the Following Boundary Conditions:

Rotor was Supported on Each End by 300 lb/in. Spring and Case was Supported on Each End by 100 lb/in. Spring.

The free-free modal data were used in the TETRA program to respresent both the vertical and horizontal planes and uncoupled springs (in the Z and Y directions) were used to connect the modal subsystems to each other and to the ground to model the configuration shown in Figure 54. The rigid body modes for the rotor and the case were approximated with the "soft spring" rigid body modes at 1.655, 2.013, 2.085, and 2.65 Hz. In addition, they were also defined in subsequent analyses with the true representations that were based on the mass properties. The results obtained with either approach were in excellent agreement. A modal Q-factor equal to 15 (3.33% critical damping) was used to represent the damping of each of the casing subsystem modes. The rotor subsystem modes were undamped. Proportional damping based on a physical Q-factor equal to 15 and a selected frequency of 3624 rpm (a critical speed with gyroscopic stiffening present) was used to represent the damping for the connecting spring elements.

## 7.1 INPUT AND OUTPUT

The TETRA input and representative output follows for constant 3000 rpm speed running with 5000 gm-in. sudden fan unbalance and a 10 mil rub element at the fan. The input listing is a part of the TETRA output and directly follows the cover sheet of the output.

AAAAA TTTTTTTT EEEEEEE TTTTTTTTT RRRRRRRR RRRRRRRR AAAAAAA TTTTTTTTT EEEEEEE TTTTTTTT TTTTTTTT RRR RRR AAA TTTTTTTTT EEE TIT EEE TTT RRRRRRRRR AAA AAA TTT EEEEEEE TTT RRRRRRRR ΑΑΑΑΑΑΑΑΑΑ EEEEEEE TTT RRRRRRR ΑΑΑΑΑΑΑΑΑΑ TTT TTT EEE TTT RRRRRRRR AAA AAA RRR RRRRR AAA TTT ÉEE TIT AAA TTT EEEEEEE TTT RRR RRRR AAA AAA TTT ' EEEEEEE TTT RRR RRRR AAA AAA G. BLACK DATE AUGUST 1980 CHARGE 19510 BLDG. 500 MAIL DROP K-190 EXT. 3334 ROTOR AND CASE VERTICAL AND HORIZONTAL MODEL 1 WITH GYRO. LOADS AT FAN AND TURBINE DATE 01/05/81 TIME 16.94

```
.0959, -.00459, 1.241E6, 2.250E7,
.6966,.00594,6.883E6,-2.488E5,
1,0,-2.426E5,-9.743E6,
.6966, -.00594, -1.026E6, 1.768E4,
.0959,.00459,-1.241E6,2.250E7,
-.10361,.01856,0,0,
SEND
$LIST2
TITLE - 'ROTOR HORIZONTAL PLANE SUBSYSTEM FOR DEMONSTRATOR MODEL 1',
ISUB=2.
PTS(1,1) =
4,0,0,0,
5, -10.0.0.
34.-30.0.0.
38, -50, 0, 0,
35, -70,0,0,
6,-90,0,0,
36, -100, 0, 0,
XMODES(1,1)=
99.3, 192, 0, 1,
120.8.300.0.1.
10065,5.38E5,0,0,
16851.9.90E6.0.0.
26425, 1.75E6, 0, 0,
VH(1,1,1)=
-1..02.0.0.
-.B,.02,0,0,
-.4..02.0.0.
0,.02,0,0,
.4..02.0.0.
.8,.02,0,0,
1,.02,0,0,
VH(1,1,2)=
1.0,0.0.
1.0.0.0.
1.0.0.0.
1,0,0,0,
1,0,0,0,
1.0.0.0.
1,0,0,0,
VH(1,1,3)=
. 12215, -. 034677, 0, 0,
-.25282, -.029534, -2.073E5, 1.176E7,
-.80295.-.016102.-1.021E5.1.568E7.
-1.0.3.519E4.1.711E7.
-.80295,.016102,1.586E5,1.558E7,
-.25282,.029534,2.073E5,1.176E7,
. 12215, .034677,0,0,
VH(1,1,4)=
.2748, .1075,0,0,
.8258,.0707,-1.444E6,-6.956E7,
.8584,.0174,-1.892E6,-3.877E7,
0,-.0017,-1.989E6,1.608E4.
-.8584,.0174,-1.723E6,3.846E7,
-.8258,.0707,-1.444E6,6.956E7,
-.2748,.1075,0,0,
VH(1,1,5)=
-.10361, -.01856, 0.0,
.0959, -.00459, 1.241E6, 2.250E7.
.6966..00594.6.883E6.-2.488E5.
1,0,-2.426E5,-9.743E6,
```

.6966, -.00594, -1.026E6, 1.768E4,

```
.0959,.00459,-1.241E6,2.250E7,
-.10361,.01856,0,0,
$END
$LIST2
TITLE CASE VERTICAL PLANE SUBSYSTEM FOR DEMONSTRATOR MODEL 1,
ISUB=7,
PTS(1,1)=
1.0,0,0,
2, -10,0,0,
37, -50, 0, 0,
3,-90,0,0,
33, -100,0,0,
XMODES(1,1)=
125.1,100,0,1,
159,64,0,1,
30637,2.38E6,15,0,
VH(1,1,1)=
1.0.0.0.
1,0,0,0,
1.0.0.0.
1,0,0,0,
1.0,0,0,
VH(1,1,2)=
-1,.02,0,0,
-.8,.02,0.0.
0,.02,0,0,
.8,.02,0,0,
1,.02,0,0,
*(E,1,1)HV
1, -. 03122, 0, 0,
.6117, -. 03028, -9.6716E5, 1.1229E7,
-.7185,0,4.3121E5,6.8026E7,
.6117,.03028,9.6716E5,1.1229E7,
1,.03122,0,0,
$END
$LIST2
TITLE= 'CASE HORIZONTAL PLANE SUBSYSTEM FOR DEMONSTRATOR MODEL 1',
ISUB=8.
PTS(1,1)=
1,0,0,0,
2.-10.0.0.
37, -50,0,0,
3,-90,0,0,
33, -100,0,0,
XMODES(1,1)=
125.1,100,0,1,
159,64,0,1,
30637,2.38E6,15,0,
VH(1,1,1)=
1,0,0,0,
1.0.0.0.
1,0,0,0,
1,0,0.0.
1,0,0,0,
VH(1,1,2)=
-1,.02,0,0,
-.8..02.0.0.
0,.02,0,0,
.8,.02,0,0,
1,.02,0,0,
VH(1,1,3)=
1, -, 03122, 0, 0,
```

| IMPUT DATA      | EOD DOINTE NO  | T LOCATED ON T     | IF MODAL OU                           | IDEVETTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |               | (       |
|-----------------|----------------|--------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------|---------|
| POINT<br>NUMBER |                | COORDINATES (      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |               |         |
| 39<br>40        | 1              | -10.000<br>-90.000 | 0.<br>0.                              | 0.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |               |         |
| NUMBER OF PI    | HYSICAL POINTS | S NOT ON MODAL     | SUBSYSTEMS                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |               |         |
|                 |                |                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |               |         |
|                 |                |                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |               |         |
|                 |                |                    |                                       | and the state of t |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |               |         |
|                 |                |                    | · · · · · · · · · · · · · · · · · · · | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del>** ** . ** . **</del>            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |               |         |
|                 |                |                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |               | <u></u> |
|                 |                |                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |               |         |
|                 |                |                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |               |         |
|                 |                |                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |               |         |
|                 |                |                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | e e de la constitución de la con |                                         |               |         |
| ·<br>           | <del> </del>   |                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |               |         |
| <del></del>     |                |                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |               |         |
|                 | <del></del>    |                    | · .                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                       |               |         |
|                 |                |                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |               |         |
|                 |                |                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                       |               |         |
|                 |                |                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · - · · · · · · · · · · · · · · · | - <del></del> | ,       |

#### ROTOR VERTICAL PLANE SUBSYSTEM FOR DEMONSTRATOR MODEL 1

NUMBER OF SUBSYSTEM DIRECTIONS= 2

GLOBAL DIRECTIONS FOR SUBSYSTEM= 1 2

COORDINATES OF REFERENCE POINT RELATIVE TO GLOBAL SYSTEM (IN.)

X= 0. Y= 0. Z= 0.

|        |          | COORDINAT | ES OF POINTS | ON SUBSYST | EM (INCH | ES)      |
|--------|----------|-----------|--------------|------------|----------|----------|
| POINT  | LOCAL    | COORDINAT | E SYSTEM     | GLOBAL C   | DORDINAT | E SYSTEM |
| NUMBER | X        | Y         | Z            | X          | Y        | Z        |
| 4      | ō.       | 0.        | 0.           | 0.         | Ō.       | 0.       |
| 5      | -10.000  | Ο.        | 0.           | - 10.000   | Ο.       | Ο.       |
| 34     | -30.000  | Ο.        | Ο.           | -30.000    | Ο.       | Ο.       |
| 38     | -50.000  | 0.        | 0.           | -50.000    | 0.       | 0.       |
| 35     | -70.000  | 0.        | 0.           | -70.000    | 0.       | Ō.       |
| 6      | -90.000  | Ο.        | 0.           | -90.000    | ο.       | ٥.       |
| 36     | -100.000 | Ο.        | Ο.           | -100.000   | 0.       | Ο.       |

NUMBER OF SUBSYSTEM POINTS= 7

| LOCAL  | GENERALIZED |           |           |        | MODE TYPE    |             | GENERALIZED | GENERALIZED   |  |
|--------|-------------|-----------|-----------|--------|--------------|-------------|-------------|---------------|--|
| MODE   | COORDINATE  | FREQUENCY | POTENTIAL | Q      | O=FLEXIBLE   | GENERALIZED | STIFFNESS   | DAMPING VALUE |  |
| NUMBER | NUMBER      | RPM       | ENERGY    | FACTOR | 1=RIGID BODY | WEIGHT-LB   | LB/IN       | (LB-SEC)/IN   |  |
| jj .   | •           |           |           |        |              |             |             |               |  |
| ]] 1   | 1           | 99.       | 1.920E 02 | 0.     |              | 1.372E 03   | 0.          | 0.            |  |
| 2      | 2           | 121.      | 3.000E 02 | 0.     | 1            | 1.449E 03   | 0.          | 0.            |  |
| 3      | 3           | 10065.    | 5.380E 05 | 0.     | 0            | 3.743E 02   | 1.076E 06   | 0.            |  |
| 4      | 4           | 16851.    | 9.900E 06 | 0.     | 0            | 2.457E 03   | 1.980E 07   | 0.            |  |
| 5      | 5           | 26425.    | 1.750E 06 | 0.     | 0            | 1.766E 02   | 3.500E 06   | 0.            |  |

NUMBER OF SUBSYSTEM MODES= 5

THE MODE SHAPES AND CORRESPONDING FORCES FOR THIS SUBSYSTEM ARE-

| LOCAL            | GENERALIZED |        | -          | PLACEMENTS<br>DIRECTION |    | AL FORCES<br>L DIRECTION |  |
|------------------|-------------|--------|------------|-------------------------|----|--------------------------|--|
| MODE             | COORDINATE  | POINT  | 1          | 2                       | 1  | 2                        |  |
| NUMBER           | NUMBER      | NUMBER | Z          | THETA-Y                 | 2  | THETA-Y                  |  |
| 1                | 1           | 4      | -1.00000   | 0.02000                 | ο. | 0.                       |  |
| 11               | 1           | 5      | -0.80000   | 0.02000                 | 0. | 0.                       |  |
| 1                | 1           | 34     | -0.40000   | 0.02000                 | 0. | 0.                       |  |
| 1                | 1           | 38     | <b>0</b> . | 0.02000                 | Ο. | Ο.                       |  |
| 1                | 1           | 35     | 0.40000    | 0.02000                 | Ο. | Ο.                       |  |
| 1                | 1           | 6      | 0.80000    | 0.02000                 | 0. | 0.                       |  |
| 1                | 1           | 36     | 1.00000    | 0.02000                 | 0. | 0.                       |  |
| 2                | 2           | 4      | 1.00000    | Ο.                      | 0. | Ο.                       |  |
| 2                | 2           | 5      | 1.00000    | 0                       | 0. | 0.                       |  |
| 2                | 2           | 34     | 1.00000    | 0.                      | Ö. | 0.                       |  |
| 3 2              | 2           | 38     | 1.00000    | Ο.                      | Ο. | Ο.                       |  |
| 2                | 2           | 35     | 1.00000    | Ο.                      | Ο. | Ο.                       |  |
| 2                | 2           | 6      | 1.00000    | 0.                      | 0. | 0.                       |  |
| 2<br>2<br>2<br>2 | 2           | 36     | 1.00000    | 0.                      | 0. | 0.                       |  |
| 3                | 3           | 4      | 0.12215    | -0.03468                | Ο. | Ο.                       |  |

|                  | C                |                                                              |                                                      | (                                                          |                                                          |   |             | ( |
|------------------|------------------|--------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|---|-------------|---|
| 3<br>3<br>3      | 3 .<br>3<br>3    | 5 -0.25282<br>34 -0.80295<br>38 -1.00000                     | -0.02953<br>-0.01610<br>0.                           | -2.073E 05<br>-1.021E 05<br>3.519E 04                      | 1.176E 07<br>1.568E 07<br>1.711E 07                      |   |             |   |
| 3 3              | 3<br>3<br>3      | 35 -0.80295<br>6 -0.25282<br>36 0.12215                      | 0.01610<br>0.02953<br>0.03468                        | 1.586E 05<br>2.073E 05<br>0.                               | 1.558E 07<br>1.176E 07<br>0.                             |   | <del></del> |   |
| 4 4 4 4          | 4<br>4<br>4<br>4 | 4 0.27480<br>5 0.82580<br>34 0.85840<br>38 0.<br>35 -0.85840 | 0.10750<br>0.07070<br>0.01740<br>-0.00170<br>0.01740 | O.<br>-1.444E O6<br>-1.892E O6<br>-1.989E O6<br>-1.723E O6 | O.<br>-6.956E O7<br>-3.877E O7<br>1.608E O4<br>3.846E O7 |   |             |   |
| 4                | 4                | 6 -0.82580<br>36 -0.27480                                    | 0.07070<br>0.10750                                   | -1.723E 06<br>-1.444E 06<br>0.                             | 6.956E 07<br>0.                                          | _ |             |   |
| 5<br>5<br>5<br>5 | 5<br>5<br>5      | 4 -0.10361<br>5 0.09590<br>34 0.69660<br>38 1.00000          | -0.01856<br>-0.00459<br>0.00594<br>0.                | O.<br>1.241E 06<br>6.883E 06<br>-2.426E 05                 | O.<br>2.250E 07<br>-2.488E 05<br>-9.743E 06              |   |             |   |
| 5<br>5<br>5      | 5<br>5<br>5      | 35 0.69660<br>6 0.09590<br>36 -0.10361                       | -0.00594<br>0.00459<br>0.01856                       | -1.026E 06<br>-1.241E 06<br>0.                             | 1.768E 04<br>2.250E 07<br>0.                             |   |             |   |
| ·                |                  |                                                              |                                                      |                                                            | ,                                                        |   |             |   |
|                  |                  |                                                              |                                                      |                                                            |                                                          |   |             |   |
|                  |                  | ·<br>                                                        |                                                      |                                                            |                                                          |   |             |   |
|                  |                  |                                                              | -                                                    |                                                            |                                                          |   |             |   |
|                  |                  |                                                              |                                                      |                                                            |                                                          |   |             |   |
|                  |                  |                                                              | <u> </u>                                             |                                                            |                                                          |   |             |   |
|                  |                  |                                                              |                                                      |                                                            |                                                          |   |             |   |
|                  |                  |                                                              |                                                      | -                                                          |                                                          | ÷ |             |   |
| 25               |                  |                                                              |                                                      |                                                            |                                                          |   |             |   |

#### ROTOR HORIZONTAL PLANE SUBSYSTEM FOR DEMONSTRATOR MODEL 1

NUMBER OF SUBSYSTEM DIRECTIONS= 2

GLOBAL DIRECTIONS FOR SUBSYSTEM= 3 4

COORDINATES OF REFERENCE POINT RELATIVE TO GLOBAL SYSTEM (IN.)

X= 0. Y= 0. Z= 0.

|        | (        | COORDINAT    | ES OF POINTS | ON SUBSYST | EM (INCH | ES)      |
|--------|----------|--------------|--------------|------------|----------|----------|
| POINT  | LOCAL    | COORDINAT    | E SYSTEM     | GLOBAL C   | DORDINAT | E SYSTEM |
| NUMBER | X        | . <b>Y</b> , | Z            | X          | Y        | Z        |
| 4      | 0.       | Ō.           | 0.           | 0.         | 0.       | 0.       |
| 5      | -10.000  | ٥.           | 0.           | -10.000    | ٥.       | Ο.       |
| 34     | -30.000  | 0.           | Ο.           | ~30.000    | Ο.       | Ο.       |
| 38     | -50.000  | Ο.           | Ο.           | -50.000    | Ο.       | Ο.       |
| 35     | -70.000  | 0            | 0.           | -70.000    | 0.       | 0.       |
| 6      | -90.000  | Ο.           | 0.           | -90.000    | Ο.       | 0.       |
| 36     | -100.000 | Ο.           | Ο.           | - 100.000  | Ο.       | 0.       |

NUMBER OF SUBSYSTEM POINTS= 7

| LOCAL  | GENERALIZED |           |           |        | MODE TYPE    |             | GENERALIZED | GENERALIZED   |
|--------|-------------|-----------|-----------|--------|--------------|-------------|-------------|---------------|
| MODE   | COORDINATE  | FREQUENCY | POTENTIAL | Q      | O=FLEXIBLE   | GENERALIZED | STIFFNESS   | DAMPING VALUE |
| NUMBER | NUMBER      | RPM       | ENERGY    | FACTOR | 1=RIGID BODY | WEIGHT-LB   | LB/IN       | (LB-SEC)/IN   |
|        |             |           |           | _      |              |             | _           | _             |
| 1      | 6           | 99.       | 1.920E 02 | 0.     | 1            | 1.372E 03   | O           | O             |
| 2      | 7           | 121.      | 3.000E 02 | 0.     | 1            | 1.449E 03   | 0.          | 0.            |
| ∦ 3    | 8           | 10065.    | 5.380E 05 | Ο.     | 0            | 3.743E 02   | 1.076E 06   | 0.            |
| 4      | 9           | 16851.    | 9.900E 06 | Ο.     | 0            | 2.457E 03   | 1.980E 07   | 0.            |
| 55     | 10          | 26425.    | 1.750E 06 | 0.     | 0            | 1.766E 02   | 3.500E 06   | 0             |

NUMBER OF SUBSYSTEM MODES= 5

THE MODE SHAPES AND CORRESPONDING FORCES FOR THIS SUBSYSTEM ARE-

(SIGNS IN THETA-Z DIRECTION CHANGED TO OBTAIN RIGHT HAND COORDINATE SYSTEM)

|      |       | LOCAL GENERALIZED MODE COORDINATE POINT |        | MODAL DISPLACEMENTS GLOBAL DIRECTION |           | AL FORCES |             |      |
|------|-------|-----------------------------------------|--------|--------------------------------------|-----------|-----------|-------------|------|
| 11   |       |                                         |        |                                      | DIRECTION | GLOBA     | L DIRECTION | <br> |
| - 11 |       | COORDINATE                              | POINT  | 3                                    | 4         | 3         | 4 .         |      |
| N    | UMBER | NUMBER                                  | NUMBER | Y                                    | THETA-Z   | Y         | THETA-Z     |      |
|      | _1    | 6                                       | 4      | -1.00000                             | -0.02000  | 0.        | 0.          |      |
|      | 1     | 6                                       | . 5    | -0.80000                             | -0.02000  | 0.        | 0.          |      |
| U    | 1     | 6                                       | 34     | -0.40000                             | -0.02000  | 0.        | 0.          |      |
| ll   | 1     | 6                                       | 38     | 0.                                   | -0.02000  | 0.        | 0.          |      |
| 1    | 1     | 6                                       | 35     | 0.40000                              | -0.02000  | 0.        | <b>O</b> .  |      |
|      | 1     | 6                                       | 6      | 0.80000                              | -0.02000  | 0.        | 0.          | <br> |
| H    | 1     | 6                                       | 36     | 1.00000                              | -0.02000  | 0.        | 0.          |      |
|      | 2     | 7                                       | 4      | 1.00000                              | 0.        | Ο.        | 0.          |      |
|      | 2     | 7                                       | 5      | 1.00000                              | 0.        | 0.        | 0.          |      |
| 11   | 2     | 7                                       | 34     | 1.00000                              | 0.        | 0.        | O.          |      |
| IJ   | 2     | 7                                       | 38     | 1.00000                              | O.        | Ō.        | o.          |      |
|      | 2     | 7                                       | 35     | 1.00000                              | 0.        | 0.        | 0.          |      |
|      | 2     | 7                                       | 6      | 1.00000                              | 0.        | 0.        | 0.          |      |
| Н    | 2     | 7                                       | 36     | 1.00000                              | 0.        | 0.        | 0.          |      |

| (                               |                                  |                                     |                                                                                |                                                                                 | (                                                                              |                                                                                |      | ( |
|---------------------------------|----------------------------------|-------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------|---|
| 3<br>3<br>3<br>3<br>3<br>3      | 8<br>8<br>8<br>8<br>8            | 4<br>5<br>34<br>38<br>35<br>6<br>36 | 0.12215<br>-0.25282<br>-0.80295<br>-1.00000<br>-0.80295<br>-0.25282<br>0.12215 | 0.03468<br>0.02953<br>0.01610<br>0.<br>-0.01610<br>-0.02953<br>-0.03468         | 0.<br>-2.073E 05<br>-1.021E 05<br>3.519E 04<br>1.586E 05<br>2.073E 05<br>0.    | O.<br>-1.176E 07<br>-1.568E 07<br>-1.711E 07<br>-1.558E 07<br>-1.176E 07<br>O. | <br> |   |
| 4<br>4<br>4<br>4<br>4           | 9<br>9<br>9<br>9<br>9            | 4<br>5<br>34<br>38<br>35<br>6<br>36 | 0.27480<br>0.82580<br>0.85840<br>0.<br>-0.85840<br>-0.82580<br>-0.27480        | -0.10750<br>-0.07070<br>-0.01740<br>0.00170<br>-0.01740<br>-0.07070<br>-0.10750 | O.<br>-1.444E O6<br>-1.892E O6<br>-1.989E O6<br>-1.723E O6<br>-1.444E O6<br>O. | O.<br>6.956E O7<br>3.877E O7<br>-1.608E O4<br>-3.846E O7<br>-6.956E O7<br>O.   |      |   |
| 5<br>5<br>5<br>5<br>5<br>5<br>5 | 10<br>10<br>10<br>10<br>10<br>10 | 4<br>5<br>34<br>38<br>35<br>6<br>36 | -0.10361<br>0.09590<br>0.69660<br>1.00000<br>0.69660<br>0.09590<br>-0.10361    | 0.01856<br>0.00459<br>-0.00594<br>0.00594<br>-0.00459<br>-0.01856               | 0.<br>1.241E 06<br>6.883E 06<br>-2.426E 05<br>-1.026E 06<br>-1.241E 06<br>0.   | O.<br>-2.25OE O7<br>2.488E O5<br>9.743E O6<br>-1.768E O4<br>-2.25OE O7<br>O.   |      |   |
|                                 |                                  |                                     |                                                                                |                                                                                 |                                                                                |                                                                                |      |   |
|                                 |                                  |                                     |                                                                                | · · · · · · · · · · · · · · · · · · ·                                           |                                                                                |                                                                                |      |   |
|                                 |                                  |                                     |                                                                                |                                                                                 |                                                                                |                                                                                |      |   |
|                                 |                                  |                                     |                                                                                | · · · · · · · · · · · · · · · · · · ·                                           |                                                                                |                                                                                |      |   |
|                                 |                                  |                                     | -                                                                              |                                                                                 |                                                                                |                                                                                |      |   |
|                                 |                                  |                                     |                                                                                |                                                                                 |                                                                                |                                                                                | <br> |   |

#### DATA FOR MODAL SUBSYSTEM 7

#### CASE VERTICAL PLANE SUBSYSTEM FOR DEMONSTRATOR MODEL 1

NUMBER OF SUBSYSTEM DIRECTIONS= 2

GLOBAL DIRECTIONS FOR SUBSYSTEM= 1 2

COORDINATES OF REFERENCE POINT RELATIVE TO GLOBAL SYSTEM (IN.)

: O. Y= O. Z= O.

| 007117          |          |            | S OF POINTS |          | -       | -        |
|-----------------|----------|------------|-------------|----------|---------|----------|
| POINT<br>NUMBER | LUCAL    | COORDINATE | : 5151EM    | GLOBAL C | OKUINAI | C 3131EM |
| NOMBER          | ^        |            | 2           | ^        | •       | -        |
| 1               | 0.       | Ö.         | 0.          | 0.       | 0.      | 0.       |
| 2               | -10.000  | Ο.         | Ο.          | -10.000  | Ο.      | Ο.       |
| 37              | -50.000  | Ο.         | 0.          | -50.000  | Ο.      | Ο.       |
| 3               | -90.000  | 0.         | 0.          | -90.000  | 0.      | 0.       |
| 33              | -100.000 | 0.         | 0.          | -100.000 | 0.      | 0.       |

NUMBER OF SUBSYSTEM POINTS= 5

| LOCAL<br>MODE<br>NUMBER | GENERALIZED<br>COORDINATE<br>NUMBER | FREQUENCY<br>RPM | POTENTIAL<br>ENERGY | Q<br>FACTOR | MODE TYPE<br>O=FLEXIBLE<br>1=RIGID BODY | GENERALIZED<br>WEIGHT-LB | GENERALIZED<br>STIFFNESS<br>LB/IN | GENERALIZED DAMPING VALUE (LB-SEC)/IN |  |
|-------------------------|-------------------------------------|------------------|---------------------|-------------|-----------------------------------------|--------------------------|-----------------------------------|---------------------------------------|--|
| ,                       | 11                                  | 125.             | 1.000E 02           | 0.          | 1                                       | 4.503E 02                | 0.                                | 0.                                    |  |
| 2                       | 12                                  | 159.             | 6.400E 01           | 0.          | 1                                       | 1.784E 02                | Ο.                                | 0.                                    |  |
| 3                       | 13                                  | 30637.           | 2.380E 06           | 15.         | 00                                      | 1.787E 02                | 4.760E_06                         | 9.891E 01                             |  |

NUMBER OF SUBSYSTEM MODES= 3

THE MODE SHAPES AND CORRESPONDING FORCES FOR THIS SUBSYSTEM ARE-

| LOCAL  | GENERALIZED |        |          | SPLACEMENTS<br>DIRECTION | MODAL<br>Global D |           |  |
|--------|-------------|--------|----------|--------------------------|-------------------|-----------|--|
| MODE   | COORDINATE  | POINT  | 1        | 2                        | 1                 | 2         |  |
| NUMBER | NUMBER      | NUMBER | Z        | THETA-Y                  | Z                 | THETA-Y   |  |
| 1      | 11          | 1      | 1.00000  | Ο.                       | 0.                | 0.        |  |
| 1      | 11          | 2      | 1.00000  | 0                        | 0.                | 0.        |  |
| 1      | 11          | 37     | 1.00000  | 0.                       | 0.                | 0.        |  |
| 1      | 11          | 3      | 1.00000  | Ο.                       | 0.                | 0.        |  |
| 1      | 11          | 33     | 1.00000  | Ο.                       | 0.                | 0.        |  |
| 2      | 12          | 1      | -1.00000 | 0.02000                  | 0.                | 0.        |  |
| 2      | 12          | 2      | -0.80000 | 0.02000                  | 0.                | 0.        |  |
| 2      | 12          | . 37   | 0.       | 0.02000                  | 0.                | 0.        |  |
| 2      | 12          | 3      | 0.80000  | 0.02000                  | 0.                | 0.        |  |
| . 2    | 12          | 33     | 1.00000  | 0.02000                  | 0.                | 0.        |  |
| 3      | 13          | 1      | 1.00000  | -0.03122                 | 0.                | 0.        |  |
| 3      | 13          | 2      | 0.61170  | -0.03028                 | -9.672E 05        | 1.123E 07 |  |
| 3      | 13          | 37     | -0.71850 | 0.                       | 4.312E 05         | 6.803E 07 |  |
| 3      | 13          | 3      | 0.61170  | 0.03028                  | 9.672E 05         | 1.123E 07 |  |
| _      | 13          | 33     | 1.00000  | 0.03122                  | 0.                | 0.        |  |

### DATA FOR MODAL SUBSYSTEM 8

#### CASE HORIZONTAL PLANE SUBSYSTEM FOR DEMONSTRATOR MODEL 1

NUMBER OF SUBSYSTEM DIRECTIONS= 2

GLOBAL DIRECTIONS FOR SUBSYSTEM= 3 4

COORDINATES OF REFERENCE POINT RELATIVE TO GLOBAL SYSTEM (IN.)

X= O. Y= O. Z= O.

| POINT  | LOCAL    | COORDINATE | S OF POINTS<br>SYSTEM | ON SUBSYST<br>GLOBAL C |    |    |
|--------|----------|------------|-----------------------|------------------------|----|----|
| NUMBER | X        | γ          | Z                     | X                      | Y  | Z  |
| 1      | Ō.       | 0.         | 0.                    | 0.                     | 0. | 0. |
| 2      | -10.000  | 0.         | 0.                    | -10.000                | Ο. | 0. |
| 37     | -50.000  | Ο.         | 0.                    | -50.000                | Ο. | 0. |
| 3      | -90.000  | Ο.         | Ο.                    | -90.000                | Ο. | 0. |
| 33     | -100.000 | Ō.         | 0.                    | -100.000               | 0. | 0. |

NUMBER OF SUBSYSTEM POINTS= 5

| LOCAL<br>MODE<br>NUMBER | GENERALIZED<br>COORDINATE<br>NUMBER | FREQUENCY<br>RPM | POTENTIAL<br>ENERGY | Q<br>FACTOR | MODE TYPE<br>O=FLEXIBLE<br>1=RIGID BODY | GENERALIZED<br>WEIGHT-LB | GENERALIZED<br>STIFFNESS<br>LB/IN | GENERALIZED<br>Damping value<br>(LB-SEC)/IN |  |
|-------------------------|-------------------------------------|------------------|---------------------|-------------|-----------------------------------------|--------------------------|-----------------------------------|---------------------------------------------|--|
| 1                       | 14                                  | 125.             | 1.000E 02           | 0.          | 1                                       | 4.503E 02                | 0.                                | 0.                                          |  |
| 2                       | 15                                  | 159.             | 6.400E 01           | 0.          | 1                                       | 1.784E 02                | 0.                                | O                                           |  |
| 3                       | 16                                  | 30637.           | 2.380E 06           | 15.         | 0                                       | 1.787E 02                | 4.760E 06                         | 9.891E 01                                   |  |

NUMBER OF SUBSYSTEM MODES= 3

THE MODE SHAPES AND CORRESPONDING FORCES FOR THIS SUBSYSTEM ARE(SIGNS IN THETA-Z DIRECTION CHANGED TO OBTAIN RIGHT HAND COORDINATE SYSTEM)

| LOCAL  | GENERALIZED |        |          | SPLACEMENTS<br>DIRECTION |            | FORCES<br>DIRECTION |   |   |
|--------|-------------|--------|----------|--------------------------|------------|---------------------|---|---|
| MODE   | COORDINATE  | POINT  | 3        | 4                        | 3          | 4                   |   |   |
| NUMBER | NUMBER      | NUMBER | Y        | THETA-Z                  | Y          | THETA-Z             |   |   |
| 1      | 14          | 1      | 1.00000  | 0.                       | 0.         | 0.                  |   |   |
| 1      | 14          | 2      | 1.00000  | 0.                       | 0.         | 0.                  |   |   |
| 1      | 14          | 37     | 1.00000  | 0.                       | 0.         | 0.                  |   |   |
| 1      | 14          | 3      | 1.00000  | 0.                       | 0.         | 0.                  |   |   |
| 1      | 14          | 33     | 1.00000  | 0.                       | .0.        | 0.                  |   |   |
| 2      | 15          | 1      | -1.00000 | -0.02000                 | 0.         | 0.                  | • |   |
| 2      | 15          | 2      | -0.80000 | -0.02000                 | 0.         | 0.                  |   | · |
| 2      | 15          | 37     | 0.       | -0.02000                 | 0.         | 0.                  |   |   |
| 2      | 15          | 3      | 0.80000  | -0.02000                 | 0.         | 0.                  |   |   |
| 2      | 15          | 33     | 1.00000  | -0.02000                 | 0.         | 0.                  |   | • |
| 3      | 16          | 1      | 1.00000  | 0.03122                  | 0.         | 0.                  |   |   |
| 3      | 16          | 2      | 0.61170  | 0.03028                  | -9.672E 05 | -1.123E 07          |   |   |
| 3      | 16          | 37     | -0.71850 | 0.                       | 4.312E 05  | -6.803E 07          |   |   |
| 3      | 16          | 3      | 0.61170  | -0.03028                 | 9.672E 05  | -1,123E 07          | • |   |
| 3      | 16          | 33     | 1.00000  | -0.03122                 | 0          | 0.                  |   | • |

## TOTAL NUMBER OF MODES OR GENERALIZED COORDINATES= 16

SUMMARY OF THE MODES OR GENERALIZED COORDINATES-

| G | F | N | F | R | Δ | 1 | t | 7 | F | D |
|---|---|---|---|---|---|---|---|---|---|---|
| u | _ |   | L | ~ | ~ |   |   | 4 | - | · |

| COORDINATE | GENERALIZED | GENERALIZED | GENERALIZED   |
|------------|-------------|-------------|---------------|
| NUMBER     | WEIGHT      | STIFFNESS   | DAMPING VALUE |
|            |             |             |               |
| 1          | 1.372E 03   | 0.          | 0.            |
| 2          | 1.449E 03   | <b>0</b> .  | 0.            |
| 3          | 3.743E 02   | 1.076E 06   | Ο.            |
| 4          | 2.457E 03   | 1.980E 07   | Ο.            |
| 5          | 1.766E 02   | 3.500E 06   | Ο.            |
| 6          | 1.372E 03   | 0.          | 0.            |
| 7          | 1.449E 03   | <b>0</b> .  | Ο.            |
| 8          | 3.743E 02   | 1.076E 06   | Ο.            |
| 9          | 2.457E 03   | 1.980E 07   | 0.            |
| 10         | 1.766E 02   | 3.500E 06   | 0.            |
| 11         | 4.503E Q2   | 0.          | 0.            |
| 12         | 1.784E 02   | <b>O</b> .  | Ο.            |
| 13         | 1.787E 02   | 4.760E 06   | 9.891E 01     |
| 14         | 4.503E 02   | ٥.          | 0.            |
| - 15       | 1.784E 02   | 0.          | 0.            |
| 16         | 1.787E 02   | 4.760E 06   | 9.891E 01     |
|            |             |             |               |

## SUMMARY OF THE COORDINATES FOR THE PHYSICAL POINTS-

| POINT<br>NUMBER | COORDINATES<br>X | (INCHES)-GLOBAL<br>Y | SYSTEM<br>Z |
|-----------------|------------------|----------------------|-------------|
| 1               | 0.               | 0.                   | 0.          |
| 2               | -10.000          | Ö.                   | 0.          |
| 3               | -90.000 _        | 0.                   | 0.          |
| 4               | · O.             | 0.                   | 0.          |
| 5               | -10.000          | Ο.                   | Ο.          |
| 6               | -90.000          | 0.                   | Ο.          |
| 33              | - 100,000        | 0.                   | 0.          |
| 34              | -30.000          | 0.                   | 0.          |
| 35              | -70.000          | Ο.                   | Ο.          |
| 36              | - 100 . 000      | Ο.                   | 0.          |
| 37              | -50.000 _        | Ο.                   | 0           |
| 38              | -50.000          | 0.                   | Ο.          |
| 39              | -10.000          | Ο.                   | 0.          |
| 40              | -90.000          | 0.                   | Ο.          |

DAMPING CONSTANTS (CALCULATED BASED ON ABOVE Q-FACTOR AND FREQUENCY)-

60.4 HERTZ

FREQUENCY=

DAMPING CONSTANT IN X DIRECTION=

DAMPING CONSTANT IN Y DIRECTION=

DAMPING CONSTANT IN Z DIRECTION=

DAMPING CONSTANT IN THETA-Y DIRECTION=

DAMPING CONSTANT IN THETA-Z DIRECTION=

O.

SPRING CONSTANT IN THETA-Z DIRECTION= O.

Q-FACTOR= 15.0

```
ELEMENT TYPE= 5
NUMBER OF END POINTS= 2
POINT NUMBER AT I END= 5
POINT NUMBER AT J END= 2
NUMBER OF DIRECTIONS FOR POINT AT I END= 5
GLOBAL DIRECTIONS FOR POINT AT I END= 1 2 3 4 5
NUMBER OF DIRECTIONS FOR POINT AT J END= 5
GLOBAL DIRECTIONS FOR POINT AT J END= 1 2 3 4 5
SPRING CONSTANT IN X DIRECTION= O.
SPRING CONSTANT IN Y DIRECTION= 1.000E 06
SPRING CONSTANT IN Z DIRECTION= 1.000E 06
SPRING CONSTANT IN THETA-Y DIRECTION= O.
SPRING CONSTANT IN THETA-Z DIRECTION=
O-FACTOR= 15.0
                        FREQUENCY=
                                      60.4 HERTZ
DAMPING CONSTANTS (CALCULATED BASED ON ABOVE Q-FACTOR AND FREQUENCY)-
DAMPING CONSTANT IN X DIRECTION= O.
DAMPING CONSTANT IN Y DIRECTION= 1.757E 02
DAMPING CONSTANT IN Z DIRECTION= 1.757E 02
DAMPING CONSTANT IN THETA-Y DIRECTION= O.
DAMPING CONSTANT IN THETA-Z DIRECTION=
```

```
ELEMENT TYPE = 5
NUMBER OF END POINTS= 2
POINT NUMBER AT I END= 6
POINT NUMBER AT J END= 3
NUMBER OF DIRECTIONS FOR POINT AT I END= 5
GLOBAL DIRECTIONS FOR POINT AT I END= 1 2 3 4 5
NUMBER OF DIRECTIONS FOR POINT AT J END= 5
GLOBAL DIRECTIONS FOR POINT AT J END= 1 2 3 4 5
SPRING CONSTANT IN X DIRECTION=
SPRING CONSTANT IN Y DIRECTION= 1.000E 06
SPRING CONSTANT IN Z DIRECTION= 1.000E 06
SPRING CONSTANT IN THETA-Y DIRECTION=
SPRING CONSTANT IN THETA-Z DIRECTION= O.
Q-FACTOR= 15.0
                       FREQUENCY=
                                      60.4 HERTZ
DAMPING CONSTANTS (CALCULATED BASED ON ABOVE Q-FACTOR AND FREQUENCY)-
DAMPING CONSTANT IN X DIRECTION= O.
DAMPING CONSTANT IN Y DIRECTION= 1.757E 02
DAMPING CONSTANT IN Z DIRECTION= 1.757E 02
DAMPING CONSTANT IN THETA-Y DIRECTION= O.
DAMPING CONSTANT IN THETA-Z DIRECTION= O.
```

```
NUMBER OF TYPE 1 PHYSICAL CONNECTING ELEMENTS= O
NUMBER OF TYPE 2 PHYSICAL CONNECTING ELEMENTS = O
NUMBER OF TYPE 3 PHYSICAL CONNECTING ELEMENTS= 1
NUMBER OF TYPE 4 PHYSICAL CONNECTING ELEMENTS = O
NUMBER OF TYPE 5 PHYSICAL CONNECTING ELEMENTS= 4
TOTAL NUMBER OF PHYSICAL CONNECTING ELEMENTS= 5
THIS RUN IS NOT A RESTART RUN.
TIME STEP= 0.000050 SECONDS
FINAL TIME = 0.512000 SECONDS
PRINT MULTIPLE=
                   1000
PLOT MULTIPLE=
INDEPENDENT ROTOR NUMBER (ONE FOR WHICH SPEED-TIME HISTORY IS INPUT)= 1
BEGINNING TIME FOR FIRST SEGMENT = 0.
                                            SECONDS
BEGINNING SPEED FOR FIRST SEGMENT=
                                      3000. RPM
                       ACCEL
         ENDING
                       RATE
          TIME
                       RPM/SEC
SEGMENT SECONDS
       0.600000
                           0.
TOTAL NUMBER OF SPEED SEGMENTS FOR INDEPENDENT ROTOR SPEED-TIME
HISTORY= 1
SUMMARY OF UNBALANCE LOAD INPUT-
  BIRTH POINT
                     MAGNITUDE PHASE ANGLE
TIME (SEC.) NUMBER
                                 DEGREES
                       GM-IN
                        5000.
TOTAL NUMBER OF UNBALANCE BIRTH EVENTS= 1
TOTAL NUMBER OF P*COS(WT) AND P*SIN(WT) LOADS= O
TOTAL NUMBER OF TIME-FORCE HISTORY LOADS= O
SUMMARY OF THE GYROSCOPIC LOAD INPUT-
              POLAR MOMENT
               OF INERTIA
POINT
                LB-IN**2
NUMBER
                  184205.
  36
                  184205.
TOTAL NUMBER OF GYRO LOAD LOCATIONS= 2
THIS RUN PRODUCES A PLOT FILE (FILE CODE 23).
TIMES, ROTOR SPEEDS, AND ROTOR ANGULAR DISPLACEMENTS
ARE WRITTEN ONTO THE PLOT FILE.
```

DISPLACEMENTS, VELOCITIES, MODAL FORCES AND COORDINATES ARE WRITTEN ONTO THE PLOT FILE FOR THE FOLLOWING POINTS AND DIRECTIONS-

| POINT<br>NUMBER | GLOBAL<br>DIRECTION<br>NUMBER | DIRECTION |
|-----------------|-------------------------------|-----------|
| 1               | 1                             | Z         |
| 1               | 3                             | Y         |
| 4               | 1                             | Z         |
| 4               | 3                             |           |
| 37              | 1                             | Z         |
| 37              | 3                             | Y         |
| 38              |                               | Z         |
| 38              | 3                             | Υ         |

TOTAL NUMBER OF POINTS AND DIRECTIONS FOR DISPLACEMENT, VELOCITY MODAL FORCE, AND COORDINATE PLOT FILE OUTPUT= 8

THE RELATIVE DISPLACEMENT MAGNITUDE, CLEARANCE, AND FORCE MAGNITUDE IS WRITTEN TO THE PLOT FILE FOR ALL TYPE 3 PHYSICAL CONNECTING ELEMENTS (RUB ELEMENTS) (IF ANY).

PHYSICAL CONNECTING ELEMENT FORCES ARE WRITTEN ONTO THE PLOT FILE FOR THE FOLLOWING PHYSICAL CONNECTING ELEMENTS, POINTS, AND DIRECTIONS-

| ELEMENT<br>NUMBER | POINT<br>NUMBER | DIRECTION<br>NUMBER | DIRECTION |
|-------------------|-----------------|---------------------|-----------|
| 3                 | 2               | 1                   | Z         |
| 3                 | 2               | 3                   | Y         |
| 3                 | 5               | 1                   | Z         |
| 3                 | 5               | 3                   | γ         |
| 4                 | 3               | 1                   | Z         |
| 4                 | 3               | 3                   | Y         |
| 4                 | 6               | 1                   | Z         |
| 4                 | 6               | 3                   | Y         |
|                   |                 |                     |           |

TOTAL NUMBER OF ELEMENTS, POINTS, AND DIRECTIONS FOR ELEMENT FORCE PLOT FILE OUTPUT= 8

SUMMARY OF THE CONNECTIONS BETWEEN THE PHYSICAL CONNECTING ELEMENTS.

AND THE MODAL SUBSYSTEMS-

| ELEMENT     | 1   | IS | CONNECTED | TO | SUBSYSTEM | 7 | AT | POINT | 2 |  |
|-------------|-----|----|-----------|----|-----------|---|----|-------|---|--|
| ELEMENT     | _ 1 | IS | CONNECTED | TO | SUBSYSTEM | 8 | AT | POINT | 2 |  |
| ELEMENT     | 2   | IS | CONNECTED | TO | SUBSYSTEM | 7 | AT | POINT | 3 |  |
| ELEMENT     | 2   | 15 | CONNECTED | TO | SUBSYSTEM | 8 | ΑT | POINT | 3 |  |
| ELEMENT     | 3   | IS | CONNECTED | TO | SUBSYSTEM | 1 | AT | POINT | 5 |  |
| ELEMENT     | 3   | IS | CONNECTED | TO | SUBSYSTEM | 2 | AT | POINT | 5 |  |
| <br>ELEMENT | 3   | ĪS | CONNECTED | TO | SUBSYSTEM | 7 | AT | POINT | 2 |  |
| ELEMENT     | 3   | IS | CONNECTED | TO | SUBSYSTEM | 8 | ΑT | POINT | 2 |  |
| ELEMENT     | 4   | IS | CONNECTED | TO | SUBSYSTEM | 1 | ΑT | POINT | 6 |  |
| ELEMENT     | 4   | 15 | CONNECTED | TO | SUBSYSTEM | 2 | AT | POINT | 6 |  |
| ELEMENT     | 4   | IS | CONNECTED | TO | SUBSYSTEM | 7 | AT | POINT | 3 |  |
| ELEMENT     | 4   | IS | CONNECTED | ΤO | SUBSYSTEM | 8 | ΑT | POINT | 3 |  |
| ELEMENT     | 5   | IS | CONNECTED | TO | SUBSYSTEM | 1 | AT | POINT | 4 |  |

ELEMENT 5 IS CONNECTED TO SUBSYSTEM 2 AT POINT 4
ELEMENT 5 IS CONNECTED TO SUBSYSTEM 7 AT POINT 1
ELEMENT 5 IS CONNECTED TO SUBSYSTEM 8 AT POINT 1

TIME = O. SECONDS SPEED SEGMENT NUMBER= 1 ROTOR PROPERTIES FOR INDEPENDENT ROTOR (ROTOR 1)-SPEED= 3000. RPM ACCELERATION= O. RPM/SEC ANGULAR DISPLACEMENT = 0. REVOLUTIONS DISPLACEMENTS IN GIVEN DIRECTION POINT THETA-Z THETA-X THETA-Y Z NUMBER INCHES INCHES **RADIANS** INCHES RADIANS RADIANS 0. 0. 0. Ö. Ö. 0. 0. 0. Ο. Ο. 0. Ο. 0. Ο. Ο. Ο. Ο. 0. 0. 0. 0. Ο. Ο. 0. 0. Ō. 0. Ο. Ο. 0. 0. ٥. 33 0. 0. 0. 0. 0. 0. 34 0. 35 0. <u>o.</u> 0. 0. 0. 36 Ο. Ο. 0. 0. ٥. 37 0. 0. Ο. ٥. 38 39 Ō. 0. Ō. 40 0. Ο. Ο. Ο. 0. VELOCITIES IN GIVEN DIRECTION POINT THETA-Z Z THETA-X THETA-Y NUMBER IN/SEC IN/SEC IN/SEC RAD/SEC RAD/SEC RAD/SEC 0. ο. 0. 0. 0. 0. Ο. Ō. 0. 0. Ο. Ο. Ο. 0. 0. 0. Ο. 0. Ο. 0. ο. 0. Ο. Ō. 0. 0. 0. Ō. 33 Ο. Ο. Ο. Ο. ٥. ο. 34 0. Ο. 0. Ο. 0. 0. 35 0. Ο. Ο. ٥. Ō. Ö. Ō. Õ. 37 0. 0. 0. 0. 0. Ο. 38 Ο. ο. 0. 0. 0. ٥. 39 0. 0. FORCES CONTRIBUTED BY THE SUBSYSTEM MODE SHAPES Y Z THETA-X THETA-Y POINT THETA-Z POUNDS POUNDS NUMBER POUNDS IN-LB IN-LB IN-LB 0. 0. 0. 0. Ο. 0. ō. ō. ō. 0. 0. 0. Ο. 0. 0. 0. 5 0. Ό. 0. 0. Ο. 0. 0. 0. 33 Ο. 0. 0. O. 0. 0. 0. Ο. 0. Ο. 0.

0.

691

٥.

Ο.

0.

| 36<br>37<br>38                  | 0.<br>0.<br>0.                        | 0.<br>0.<br>0.                                 | 0.<br>0.<br>0.              | 0.<br>0.<br>0.             | 0.<br>0.<br>0.                        | 0.<br>0.<br>0.             |                                   |                                                  | 100 to |
|---------------------------------|---------------------------------------|------------------------------------------------|-----------------------------|----------------------------|---------------------------------------|----------------------------|-----------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|                                 |                                       | ES ARE FOR THE TY<br>HAT THE ELEMENT E         |                             |                            |                                       |                            |                                   |                                                  |                                                                                                                 |
| ELEMENT (                       | RELATIVE<br>DISPLACEMENT<br>INCHES    |                                                |                             |                            | FORCE IN Y DI<br>I END<br>POUNDS      | RECTION<br>J END<br>POUNDS | FORCE IN Z DIR<br>I END<br>POUNDS | ECTION<br>J END<br>POUNDS                        | FORCE<br>MAGNITUDE<br>POUNDS                                                                                    |
|                                 |                                       | O.0100 O.0 E TYPE 5 PHYSICAL ENTS) EXERT ON TH | CONNECTIN                   |                            |                                       | 0.                         | Ö.                                | <del>0</del> .                                   | ō.                                                                                                              |
|                                 | VIII E IV E E E IV                    |                                                |                             | ,                          | FORCE IN GIVEN DI                     |                            | ·                                 |                                                  |                                                                                                                 |
| ELEMENT<br>NUMBER               | END                                   | POINT                                          | POUNDS                      | POUNDS                     | Z<br>POUNDS                           | THETA-Y<br>IN-LB           | THETA-Z<br>IN-LB                  |                                                  |                                                                                                                 |
| 1<br>1<br>2                     | I<br>J<br>I                           | 2<br>39<br>3                                   | 0.<br>0.<br>0.              | 0.<br>0.<br>0.             | o.<br>o.<br>o.                        | 0.<br>0.<br>0.             | 0.<br>0.<br>0.                    |                                                  |                                                                                                                 |
| 2<br>3<br>3                     | J<br>I<br>J                           | 40<br>5<br>2<br>6                              | 0.<br>0.<br>0.              | 0.<br>0.<br>0.<br>0.       | ö.<br>o.<br>o.                        | 0.<br>0.<br>0.<br>0.       | 0.<br>0.<br>0.                    |                                                  |                                                                                                                 |
| THE GYROS                       | SCOPIC FOR                            | 3<br>CES ACTING ON TH                          | 0.                          | 0.                         | 0.                                    | ō.                         | 0.                                |                                                  | Antonia agradija — Antigrapija ( M. Mariania ar Antigrafia ) Antigrapi                                          |
| POINT<br>NUMBER                 | ROTOR<br>NUMBER                       | POLAR MOMENT<br>OF INERTIA<br>LB-IN++2         | Y-A<br>Mom<br>In-           | ENT                        | Z-AXIS<br>MOMENT<br>IN-LB             |                            |                                   |                                                  | er Carabas eva usalenna errennagenage                                                                           |
| 36<br>SUMMARY (                 | 1 1                                   | 184205.<br>184205.                             | 0.<br>0.                    |                            | 0.<br>0.                              |                            |                                   | •                                                |                                                                                                                 |
| BIRTH<br>TIME<br>SECONDS        | POINT                                 | NCE FORCES-<br>ROTOR MAGNITUDI<br>NUMBER GM-IN | PHASE<br>E ANGLE<br>DEGREES | FORCE (LB.)<br>Y-DIRECTION | FORCE (LB.)<br>Z-DIRECTION            |                            |                                   |                                                  |                                                                                                                 |
| 0.                              | 4                                     | 1 5000.                                        | 0.                          | 2815.522                   | 0.                                    |                            |                                   |                                                  |                                                                                                                 |
| GENERALIZ<br>COORDINA<br>NUMBER | ZED                                   | GENERALIZED FORCE DUE TO APPLIED FORCES ONLY   |                             |                            |                                       |                            |                                   |                                                  |                                                                                                                 |
| 1 2 3                           | · · · · · · · · · · · · · · · · · · · | 0.<br>0.<br>0.                                 |                             |                            |                                       |                            |                                   |                                                  |                                                                                                                 |
| 5<br>6<br>7                     |                                       | 0.<br>-2815.522<br>2815.522<br>343.916         |                             |                            |                                       |                            |                                   |                                                  |                                                                                                                 |
| 9<br>10<br>11                   |                                       | 773.705<br>-291.716<br>0.                      |                             |                            | · · · · · · · · · · · · · · · · · · · |                            |                                   | * <del>***********************************</del> |                                                                                                                 |

| 12 | 0. |
|----|----|
| 13 | 0. |
| 14 | 0. |
| 15 | 0. |
| 16 | 0. |

| GENERALIZED |              |             |             | <b>GENERALIZED</b> | GENERALIZED | GENERALIZED   |               |
|-------------|--------------|-------------|-------------|--------------------|-------------|---------------|---------------|
| COORDINATE  | GENERALIZED  | GENERALIZED | GENERALIZED | WEIGHT             | STIFFNESS   | DAMPING VALUE | GENERAL I ZED |
| NUMBER      | DISPLACEMENT | VELOCITY    | FORCE       | POUNDS             | LB/IN       | (LB-SEC)/IN   | ACCELERATION  |
| il .        |              |             |             |                    |             |               |               |
| 11          | 0.           | 0.          | 0.          | 1.372E 03          | 0.          | 0.            | O             |
| 2           | 0.           | 0.          | 0.          | 1.449E O3          | 0.          | 0.            | 0.            |
| 3           | 0.           | 0.          | 0.          | 3.743E 02          | 1.076E 06   | 0.            | 0.            |
| 4           | 0.           | 0.          | 0.          | 2.457E 03          | 1.980E 07   | 0.            | 0.            |
| 5           | 0.           | 0.          | 0.          | 1.766E 02          | 3.500E 06   | 0             | 0             |
| 6           | 0.           | . 0.        | -2815.522   | 1.372E 03          | Ō.          | 0.            | -792.8347     |
| 7           | 0.           | 0.          | 2815.522    | 1.449E 03          | 0.          | 0.            | 750.9274      |
| 8           | 0.           | 0.          | 343.916     | 3.743E 02          | 1.076E 06   | 0.            | 355.0783      |
| 9           | <u> </u>     | 0.          | 773.705     | 2.457E 03          | 1.980E 07   | 0.            | 121.6797      |
| 10          | Ö.           | 0.          | -291.716    | 1.766E 02          | 3.500E 06   | 0.            | -638.2326     |
| 11.         | Ο.           | Ο.          | 0.          | 4.503E 02          | Ο.          | 0.            | 0.            |
| 12          | 0.           | 0.          | 0.          | 1.784E Q2          | 0.          | 0.            | 0.            |
| 13          | 0            | 0.          | 0.          | 1.787E O2          | 4.760E 06   | 9.891E 01     | 0             |
| 14          | 0.           | 0.          | 0.          | 4.503E 02          | 0.          | 0.            | 0.            |
| 15          | 0.           | 0.          | 0.          | 1.784E 02          | Ο.          | Ο.            | 0.            |
| 16          | 0.           | 0.          | Ο.          | 1.787E O2          | 4.760E 06   | 9.891E 01     | 0.            |
| 1           |              | •           |             |                    |             |               |               |

TIME = 0.0500000 SECONDS

SPEED SEGMENT NUMBER= 1

ROTOR PROPERTIES FOR INDEPENDENT ROTOR (ROTOR 1)-

SPEED= 3000. RPM
ACCELERATION= O. RPM/SEC

ANGULAR DISPLACEMENT= 2.50000218 REVOLUTIONS

|                | <del></del>                            | nic            | PLACEMENTS IN             | GIVEN DIRECT | TION                      |                        |
|----------------|----------------------------------------|----------------|---------------------------|--------------|---------------------------|------------------------|
| POINT          | x                                      | Y              | Z                         | THETA-X      | THETA-Y                   | THETA-Z                |
| NUMBER         | INCHES                                 | INCHES         | INCHES                    | RADIANS      | RADIANS                   | RADIANS                |
| 1              | 0.                                     | -0.03277097    | 0.00831543                | 0.           | -0.00023358               | -0.00041673            |
| 2              | 0.                                     | -0.02860382    | 0.00596802                | 0.           | -0.00023343               | -0.00041673            |
| 3              | 0.                                     | 0.00473958     | -0.01233554               | 0.           | -0.00022416               | -0.00041685            |
| 4              | Ö.                                     | -0.04511452    | 0.01107266                | 0.           | -0.00031388               | -0.00065406            |
| 5              | 0.                                     | -0.03852580    | 0.00805975                | 0.           | -0.00031162               | -0.00064084            |
| 6              | 0.                                     | 0.00700484     | -0.01765176               | 0.           | -0.00035026               | -0.00053106            |
| 33             | 0.                                     | 0.00890828     | -0.01456402               | 0.           | -0.00022401               | -0.00041685            |
| 34             | 0.                                     | -0.02587625    | 0.00203800                | 0.           | -0.00031369               | -0.00060806            |
| 35             | 0.                                     | -0.00327497    | -0.01072466               | 0.           | -0.00033705               | -0.00054421            |
| 36             | Ö.                                     | 0.01207768     | -0.02122501               | O.           | -0.00035569               | -0.00053139            |
| 37             | 0.                                     | -0.01193478    | -0.00338748               | 0.           | -0.00022879               | -0.00041679            |
| 38             | 0.                                     | -0.01413032    | -0.00416926               | 0.           | -0.00032337               | -0.00057262            |
| 39             | 0.                                     | 0.             | 0.                        | 0.           | 0.                        | 0.                     |
| 40             | Ö.                                     | Ö.             | 0.                        | o.           | o.                        | 0.                     |
|                |                                        |                |                           |              |                           |                        |
| 55744          | —————————————————————————————————————— |                | ELOCITIES IN              |              |                           | TUETA                  |
| POINT          | X                                      | Υ              | 7                         | THETA-X      | THETA-Y                   | THETA-Z                |
| NUMBER         | IN/SEC                                 | IN/SEC         | IN/SEC                    | RAD/SEC      | RAD/SEC                   | RAD/SEC                |
| 1              | Ο.                                     | -2.308042      | -11.006491                | 0.           | 0.145031                  | -0.080491              |
| 2              | 0.                                     | -1.497063      | -9.556346                 | Ö.           | 0.145033                  | -0.080416              |
| 3              | Ö.                                     | 4.742970       | 2.051525                  | 0.           | 0.145164                  | -0.075585              |
| 4              | Ö.                                     | -3.167364      | -15.144831                | Ο.           | 0.224953                  | -0.113788              |
| 5              | 0.                                     | -2.116223      | -12.859901                | ٥.           | 0.221493                  | -0.110744              |
| 6              | <u> </u>                               | 6.703062       | 3.063304                  | 0.           | 0.194508                  | -0.115872              |
| 33             | Ö.                                     | 5.491999       | 3.503347                  | Q.           | 0.145166                  | -0.075510              |
| 34             | Ö.                                     | -0.061720      | -8.453846                 | Ö.           | 0.211730                  | -0.108675              |
| 35             | Ö.                                     | 4.318008       | -0.579646                 | o.           | 0.193814                  | -0.114362              |
| 36             | <u> </u>                               | 7.907604       | 4.907780                  | O.           | 0.198268                  | -0.115298              |
| 37             | Ö.                                     | 1.729063       | -3.755285                 | O.           | 0.145098                  | -0.078000              |
| 38             | Ö.                                     | 2.053834       | -4.363334                 | Ö.           | 0.200898                  | -0.110877              |
| 39             | Ö.                                     | 0.             | 0.                        | o.           | 0.                        | 0.                     |
| 40             | <u> </u>                               | Ö.             | Ö.                        | Ö.           | Ō.                        | Ö.                     |
|                |                                        | FORCE A        | ONTO IDUTED BY            | THE CHOCKET  | EN MODE SUADES            |                        |
| POINT          | •                                      | Y Y            | Z Z                       | THE SUBSYST  | EM MODE SHAPES<br>THETA-Y | THETA-Z                |
|                | X                                      | POUNDS         | POUNDS                    | IN-LB        | IN-LB                     | IN-LB                  |
| NUMBER         | POUNDS                                 | FUUND3         | KOOMD2                    | 114_FD       | TIA.FD                    | TMLCD                  |
| 1              | Ο.                                     | Ο.             | Ο.                        | Ο.           | 0.                        | 0.                     |
| 2              | 0.                                     | -1.935         | -148.119                  | 0            | 1719.704                  | -22.461                |
| 3              | 0.                                     | 1.935          | 148.119                   | 0.           | 1719.704                  | -22.461                |
| 4              | Ο.                                     | 0.             | Ο.                        | Ο.           | 0.                        | Ο.                     |
| 5              | 0.                                     | 420.714        | 458.600                   | 0.           | 2368.106                  | 29773.079              |
| 6              | 0.                                     | -952.426       | -156.844                  | 0            | -12167.978                | 4159.596               |
|                |                                        |                |                           |              |                           |                        |
| 33             | 0.                                     | 0.             | ٥.                        | 0.           | 0.                        | 0.                     |
| 33<br>34<br>35 | 0.<br>0.                               | O.<br>1473.846 | 0.<br>1196.969<br>-65.747 | 0.<br>0.     | -6570.891<br>-14536.795   | 36917.246<br>22445.777 |

| NUMBER   INCHES   INCHES   INCHES   NUMBER NUMBER   POUNDS   POU   |         |           |            |        |        |             | ,        |             |           |                                       |             | (        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|------------|--------|--------|-------------|----------|-------------|-----------|---------------------------------------|-------------|----------|
| 37 O. 40.863 66.039 O. 10419.075 -136.073 38 O. 490.301 151.209 O. 12812.401 34732.307  THE FOLLOUING VALUES ARE FOR THE TYPE 3 PHYSICAL COMMECTING ELEMENTS. PRORCES ARE THOSE THAT THE ELEMENT SERTS ON THE ROTROR CASE-  FLEMENT DISPLACEMENT BAND CLEARANCE POINT POINT I END UPON DISPLAY BAND JEND JEND JEND POINTS POINT POINT I END UPON POINTS POINT POINT SPRING-DAMPER ELEMENTS. PROMPS POINT POINT SPRING-DAMPER POINT SPRING | 36      | 0.        |            | 0.     | 0.     | 0.          |          | 0.          | 0.        |                                       |             |          |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |           |            |        |        |             | 104      |             |           |                                       |             |          |
| HE FOLLOWING VALUES ARE FOR THE TYPE 2 PHYSICAL CONNECTING ELEMENTS.  ORCES ARE THOSE THAT THE ELEMENT EXERTS ON THE ROTOR OR CASE-  RELATIVE DED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38      | 0.        |            |        |        | -           |          |             |           |                                       |             |          |
| LEMENT DISPLACEMENT BAND CLEARANCE POINT POINT 1 END JEND I END JEND MAGNITUR MIRRER TINCHES INCHES INCHES NUMBER NUMBER OPUNDS POUNDS IN-LB IN |         |           |            |        |        |             |          | ENTS.       |           |                                       |             |          |
| UMBER   INCHES   INCHES   INCHES   NUMBER NUMBER   POUNDS   POUN   |         |           |            |        |        |             |          |             |           |                                       |             |          |
| 5 0.0126 0.0100 0.0026 4 1 2584.069 -2584.069 .577.213 577.213 2647.71  HE FORCES THAT THE TYPE 5 PHYSICAL CONNECTING ELEMENTS (UNCOUPLED POINT PRIMS DAMPER ELEMENTS) EXERT ON THE ENGINE COMPONENTS OR GROUND ARE-  LEMENT POINT X FORCE IN GIVEN DIRECTION  Y FORCE IN GIVEN DIRECTION  Y FORCE IN GIVEN DIRECTION  1 1 2 0. 14433.403 -2144.638 0. 0. 0. 1 1 3 3 014433.403 -2144.638 0. 0. 0. 1 1 3 3 014433.403 -2144.638 0. 0. 0. 1 1 3 3 02786.332 -5987.578 0. 0. 0. 3 1 5 0. 10030.745 -1511.401 0. 0. 0. 3 1 5 0. 10030.745 -1511.401 0. 0. 0. 4 1 6 02609.586 5138.481 0. 0. 0.  HE GYROSCOPIC FORCES ACTING ON THE ROTOR(S) ARE-  ONT ROTOR OF INERTIA MOMENT MOMENT MOMENT NUMBER SIN-LB IN-LB IN-LB  LIMMARY OF UNBALANCE FORCES-  BIRTH TIME POINT ROTOR MAGNITUDE ANGLE FORCE (LB.) FORCE (LB.)  SECONDO NUMBER NUMBER NUMBER SIN-LD DEGREES Y-01RECTION Z-DIRECTION Z-DIRECTION Z-DIRECTION NUMBER N             |         |           |            |        |        |             |          |             |           |                                       |             | MAGNITUD |
| HE FORCES THAT THE TYPE 5 PHYSICAL CONNECTING ELEMENTS (UNCOUPLED POINT PRING-DAMPER ELEMENTS) EXERT ON THE ENGINE COMPONENTS OR GROUND ARE-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JMBER   | INCHES    | INCHES     | INCHES | NUMBER | NUMBER      | POU      | NDS         | POUNDS    | POUNDS                                | POUNDS      | POUNDS   |
| RING-DAMPER ELEMENTS)   EXERT ON THE ENGINE COMPONENTS OR GROUND ARE-   EMENT   FORCE IN GIVEN DIRECTION   FORCE IN GIVEN DIRECTION   THETA-Z   THETA-Z   THETA-Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5       | 0.0126    | 0.0100     | -0.002 | 6 4    | 1           | 2584.0   | 069         | -2584.069 | -577.213                              | 577.213     | 2647.75  |
| LEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |           |            |        |        | •           |          |             |           |                                       |             |          |
| MMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |           |            |        |        |             | FORCE II | N GIVEN D   | IRECTION  |                                       | •           |          |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EMENT   |           | POINT      |        | X      |             |          | Z           |           | THETA-Z                               |             |          |
| 1 J 39 O14433.403 2144.638 O. O. 2 2 I 3 O2786.382 5987.578 O.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JMBER   | END       | NUMBER     | Pr     | DUNDS  | POUNDS      |          | POUNDS      | IN-LB     | IN-LB                                 |             |          |
| 1 J 39 O14433.403 2144.638 O. O. 2 2 I 3 O2786.382 5987.578 O.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1       | I         | 2          |        | ٥.     | 14433.403   |          | -2144.638   | 0.        | 0.                                    |             |          |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |           |            |        |        |             |          |             |           |                                       |             |          |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2       |           |            |        |        |             |          |             |           |                                       |             |          |
| 3 J 2 O10030.745 1511.401 O. O. 4 I 6 O2609.586 5138.481 O. O. 4 J 3 O. 2609.586 -5138.481 O. O.  RE GYROSCOPIC FORCES ACTING ON THE ROTOR(S) ARE-  DINT ROTOR OF INERTIA MOMENT M       |         | J         | 40         |        |        |             |          |             |           |                                       |             |          |
| 4 I 6 O2609.586 5138.481 O. O. 4 J 3 O. 2609.586 -5138.481 O. O. 4 E GYROSCOPIC FORCES ACTING ON THE ROTOR(S) ARE-  POLAR MOMENT Y-AXIS Z-AXIS  JINT ROTOR OF INERTIA MOMENT MOMENT JINBER NUMBER LB-IN**2 IN-LB IN-LB  4 I 184205. 17041.671 33690.387 36 I 184205. 17267.804 29693.791  JIMMARY OF UNBALANCE FORCES-  BIRTH TIME POINT ROTOR MAGNITUDE ANGLE FORCE (LB.) FORCE (LB.)  SECONDS NUMBER NUMBER GM-IN DEGREES Y-DIRECTION Z-DIRECTION  4 I 5000. O2815.522 -0.001  GENERALIZED  FORCE OILLY  1 O.001 2 -0.000 4 -0.000 5 O.000 6 2815.522 7 -2815.522 7 -2815.522 7 -2815.522 8 -343.916 9 -773.705 10 291.716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3       | I         | 5          | 1      | 0.     | 10030.745   |          | -1511.401   | 0.        | 0.                                    |             |          |
| 4 J 3 O. 2609.586 -5138.481 O. O.  HE GYROSCOPIC FORCES ACTING ON THE ROTOR(S) ARE-  POLAR MOMENT Y-AXIS Z-AXIS  JINT ROTOR OF INERTIA MOMENT MOMENT JINBER NUMBER LB-IN+-2 IN-LB IN-LB  4 1 184205. 17041.671 33690.387 36 1 184205. 17267.804 29693.791  JIMMARY OF UNBALANCE FORCES-  BIRTH TIME POINT ROTOR MAGNITUDE ANGLE FORCE (LB.) FORCE (LB.)  SECONDS NUMBER NUMBER GM-IN DEGREES Y-DIRECTION Z-DIRECTION  4 1 5000. O2815.522 -0.001  CRINERALIZED FORCE SOILY  1 0 001 2 -0.001 3 -0.000 4 -0.000 5 0.000 6 2815.522 7 -2815.522 7 -2815.522 8 -343.916 9 -773.705 291.716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3       | J         | 2          | •      | ٥.     | -10030.745  |          | 1511.401    | 0.        | 0.                                    |             |          |
| FORCE   FORCE   ACTING ON THE ROTOR(S)   ARE-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4       | I         | 6          |        | 0      | -2609.586   |          |             |           | 0.                                    |             |          |
| POLAR MOMENT   Y-AXIS   Z-AXIS   JMBER   NUMBER   LB-IN++2   IN-LB     | 4       | J         | 3          | 1      | ō.     | 2609.586    |          | -5138.481   | 0.        | 0.                                    |             |          |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |           | OF INE     | RTIA   | MOM    | MENT        | MOMENT   |             |           |                                       |             |          |
| BIRTH TIME POINT ROTOR MAGNITUDE ANGLE FORCE (LB.) FORCE (LB.) SECONDS NUMBER OF THE POINT SECONDS OF THE P |         | 1         |            |        |        |             | _        |             |           |                                       |             |          |
| TIME POINT NUMBER NUMBER OM-IN DEGREES Y-DIRECTION Z-DIRECTION  4 1 5000. 02815.522 -0.001  GENERALIZED FORCE DUE DODDINATE TO APPLIED NUMBER FORCES ONLY  1 0.001 2 -0.000 4 -0.000 5 0.000 6 2815.522 7 -2815.522 7 -2815.522 8 -343.916 9 -773.705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | JMMARY  | OF UNBALA | NCE FORCE  | .s-    |        |             |          |             |           |                                       |             |          |
| TIME SECONDS NUMBER NUMBER NUMBER NUMBER OM-IN DEGREES Y-DIRECTION Z-DIRECTION  4 1 5000. 02815.522 -0.001  GENERALIZED  ENERALIZED  FORCE DUE OORDINATE TO APPLIED NUMBER FORCES ONLY  1 0.001 2 -0.000 4 -0.000 5 0.000 6 2815.522 7 -2815.522 7 -2815.522 8 -343.916 9 -773.705 10 0.000 10 0.000 10 0.000 11 0.000 12 0.000 13 0.000 14 0.0000 15 0.0000 16 0.0000 17 0.0000 18 0.0000 19 0.0000 19 0.0000 19 0.0000 19 0.0000 19 0.0000 19 0.0000 19 0.0000 19 0.0000 19 0.0000 19 0.0000 19 0.0000 19 0.0000 19 0.00000 19 0.00000 19 0.00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BIRTH   |           |            |        | PHASE  | -           |          |             |           |                                       |             |          |
| GENERALIZED FORCE DUE OORDINATE TO APPLIED NUMBER FORCES ONLY  1 0.001 2 -0.001 3 -0.000 4 -0.000 5 0.000 6 2815.522 7 -2815.522 8 -343.916 9 -773.705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TIME    |           |            |        | ANGLE  |             |          |             | •         |                                       |             |          |
| ENERALIZED FORCE DUE  OORDINATE TO APPLIED  NUMBER FORCES ONLY   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •       | 4         | 1          | 5000.  | 0.     | -2815.522   |          | -0.001      |           |                                       |             |          |
| ENERALIZED FORCE DUE  OORDINATE TO APPLIED  NUMBER FORCES ONLY   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |           | GENERAL 17 | 'FD    |        |             |          |             |           |                                       |             |          |
| OORDINATE TO APPLIED FORCES ONLY  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ENERALI |           |            |        |        | <del></del> |          | <del></del> |           |                                       | <del></del> |          |
| 2 -0.001<br>3 -0.000<br>4 -0.000<br>5 0.000<br>6 2815.522<br>7 -2815.522<br>8 -343.916<br>9 -773.705<br>10 291.716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OORDINA | TE        | TO APPL    | .IED   |        | •           |          |             |           |                                       |             |          |
| 3 -0.000<br>4 -0.000<br>5 0.000<br>6 2815.522<br>7 -2815.522<br>8 -343.916<br>9 -773.705<br>10 291.716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1       |           |            |        |        |             |          |             |           |                                       |             |          |
| 4 -0.000 5 0.000 6 2815.522 7 -2815.522 8 -343.916 9 -773.705 10 291.716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |           |            |        |        |             |          |             |           |                                       |             |          |
| 5 0.000<br>6 2815.522<br>7 -2815.522<br>8 -343.916<br>9 -773.705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3       |           |            |        |        |             |          |             |           |                                       |             |          |
| 6 2815.522<br>7 -2815.522<br>8 -343.916<br>9 -773.705<br>10 291.716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4       |           |            |        |        | <del></del> |          |             |           | · · · · · · · · · · · · · · · · · · · |             |          |
| 7 -2815.522<br>8 -343.916<br>9 -773.705<br>10 291.716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |           |            |        |        |             |          |             |           |                                       |             |          |
| 8 -343.916<br>9 -773.705<br>10 291.716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |           |            |        |        |             |          |             |           |                                       |             |          |
| 9 -773.705<br>10 291.716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |           |            |        |        |             |          |             |           |                                       |             |          |
| 10 291.716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |           |            |        |        |             |          | <del></del> |           |                                       |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |            |        |        |             |          |             |           |                                       |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11      |           | 0.         | . 5    |        |             |          |             |           |                                       |             | •        |

| - 11 |             | _            |             |              |             |             |               |              |  |
|------|-------------|--------------|-------------|--------------|-------------|-------------|---------------|--------------|--|
| -    | 12          | 0.           |             |              |             |             |               |              |  |
| Į    | 13          | 0.           |             |              |             |             |               |              |  |
| .    | 14          | <u> </u>     |             |              |             |             |               |              |  |
| 1    | 15          | 0.           |             |              |             |             |               |              |  |
| ١.   | 16          | 0.           |             |              |             |             |               |              |  |
|      |             |              |             |              |             |             |               |              |  |
| 1    | GENERALIZED |              |             |              | GENERALIZED | GENERALIZED | GENERALIZED   |              |  |
| - 1  | COORDINATE  | GENERALIZED  | GENERALIZED | GENERALIZED  | WEIGHT      | STIFFNESS   | DAMPING VALUE | GENERALIZED  |  |
|      | NUMBER      | DISPLACEMENT | VELOCITY    | FORCE        | POUNDS      | LB/IN       | (LB-SEC)/IN   | ACCELERATION |  |
| i    |             |              |             |              |             |             |               |              |  |
| ŀ    | 1           | -0.01617755  | 10.053262   | 6583.309     | 1.372E 03   | 0.          | 0.            | 1853.8220    |  |
| ı    | 2           | -0.00497969  | -5.039456   | 3049.866     | 1.449E 03   | 0.          | 0.            | 813.4293     |  |
|      | 3           | -0.00067527  | -0.486346   | -979.663     | 3.743E 02   | 1.076E 06   | Ο.            | -261.2904    |  |
| ı    | 4           | -0.00010449  | 0.098095    | -1961.822    | 2.457E 03   | 1.980E 07   | 0.            | 16.8276      |  |
| - [] | 5           | 0.00013516   | 0.189776    | 411.839      | 1.766E 02   | 3.500E 06   | 0.            | -133.9766    |  |
| -    | 6           | 0.02864669   | 5.546710    | -11148.495   | 1.372E 03   | 0.          | 0.            | -3139.3522   |  |
| -    | . 7         | -0.01626238  | 2.338521    | 7189.706     | 1.449E 03   | 0.          | · 0.          | 1917.5658    |  |
| -    | 8           | -0.00189543  | 0.113431    | - 1765 . 899 | 3.743E 02   | 1.076E 06   | Ο.            | 282.4671     |  |
| - 1  | 9           | 0.00018411   | 0.033574    | 3560.983     | 2.457E 03   | 1.980E 07   | 0.            | -13.2750     |  |
| I    | 10          | 0.00023662   | -0.171256   | 809.847      | 1.766E 02   | 3.500E 06   | 0.            | -40.0935     |  |
| ∦    | 11          | -0.00327744  | -3.753732   | 793.073      | 4.503E 02   | 0.          | Ο.            | 680.5414     |  |
| ·II  | 12          | -0.01143973  | 7.254919    | 608.654      | 1.784E 02   | 0.          | Ο.            | 1318.2907    |  |
|      | 13          | 0.00015315   | 0.002161    | 709.255      | 1.787E 02   | 4.760E 06   | 9.891E 01     | -43.1302     |  |
|      | 14          | -0.01193335  | 1.671748    | 1641.794     | 4.503E 02   | O.          | 0.            | 1408.8335    |  |
| ll   | 15          | 0.02083962   | 3.900020    | - 1079 . 494 | 1.784E 02   | 0.          | 0.            | -2338.0892   |  |
| 1    | 16          | 0.00000200   | -0.079770   | 0.891        | 1.787E 02   | 4.760E 06   | 9.891E 01     | -1.6009      |  |
| - tl |             |              |             |              |             |             |               |              |  |

TENDY 1209 Per 1440

ROTOR PROPERTIES FOR INDEPENDENT ROTOR (ROTOR 1)-

SPEED= 3000, RPM

ACCELERATION= 0. RPM/SEC

ANGULAR DISPLACEMENT= 5.00000525 REVOLUTIONS

| <u> </u> | <del></del> | DIS         | PLACEMENTS IN | GIVEN DIREC | TION        |            |
|----------|-------------|-------------|---------------|-------------|-------------|------------|
| POINT    | X           | Y           | 2             | THETA-X     | THETA-Y     | THETA-Z    |
| NUMBER   | INCHES      | INCHES      | INCHES        | RADIANS     | RADIANS     | RADIANS    |
| 1        | 0.          | 0.02746222  | -0.00475721   | 0.          | 0.00000625  | 0.00040284 |
| 2        | Ο.          | 0.02343173  | -0.00470091   | 0.          | 0.00000633  | 0.00040281 |
| 3        | 0.          | -0.00872697 | -0.00399713   | Ο.          | 0.00001127  | 0.00040115 |
| 4        | 0.          | 0.03889252  | -0.00653721   | 0.          | 0.00001866  | 0.00063848 |
| 5        | 0.          | 0.03248879  | -0.00626488   | 0.          | 0.00001916  | 0.00062634 |
| 6        | Ο.          | -0.01268604 | -0.00566416   | 0.          | -0.00001130 | 0.00054221 |
| 33       | 0.          | -0.01273616 | -0.00387748   | Ο.          | 0.00001134  | 0.00040113 |
| 34       | 0.          | 0.02015537  | -0.00575915   | 0.          | 0.00001542  | 0.00059776 |
| 35       | 0.          | -0.00224095 | -0.00542387   | 0.          | -0.00000339 | 0.00054793 |
| 36       | 0.          | -0.01790092 | -0.00584569   | 0.          | -0.00001369 | 0.00054586 |
| 37       | 0.          | 0.00731590  | -0.00445754   | 0.          | 0.00000880  | 0.00040198 |
| 38       | 0.          | 0.00859837  | -0.00544643   | 0.          | 0.00000677  | 0.00056875 |
| 39       | 0.          | 0.          | 0.            | 0.          | 0.          | 0.         |
| 40       | Ο.          | 0.          | 0.            | 0.          | 0.          | 0.         |

|        |        | VE        | LOCITIES IN G | IVEN DIRECTI | ON        |           |
|--------|--------|-----------|---------------|--------------|-----------|-----------|
| POINT  | X      | Υ         | Z             | THETA-X      | THETA-Y   | THETA-Z   |
| NUMBER | IN/SEC | IN/SEC    | IN/SEC        | RAD/SEC      | RAD/SEC   | RAD/SEC   |
| 1      | ο.     | 2.001101  | 8.928284      | ٥.           | -0.133852 | 0.003219  |
| 2      | 0.     | 1.971567  | 7.588047      | Ö.           | -0.133831 | 0.003251  |
| 3      | 0.     | 1.627004  | -3.063852     | 0.           | -0.132466 | 0.005363  |
| 4      | 0.     | 2.672810  | 12.745767     | 0.           | -0.214916 | 0.008544  |
| 5      | 0.     | 2.560899  | 10.567732     | Ω.           | -0.210981 | 0.008345  |
| 6      | 0.     | 2.317475  | -4.413607     | 0.           | -0.176755 | -0.002897 |
| 33     | 0.     | 1.570397. | -4.386590     | Ο.           | -0.132445 | 0.005395  |
| 34     | 0.     | 2.362936  | 6.382647      | 0.           | -0.200439 | 0.006393  |
| 35     | Ο.     | 2.238117  | -1.043631     | 0.           | -0.179594 | -0.000572 |
| 36     | 0.     | 2.373811  | -6.090387     | 0.           | -0.178139 | -0.003352 |
| 37     | 0.     | 1.845658  | 2.232126      | 0.           | -0.133149 | 0.004307  |
| 38     | 0.     | 2.246493  | 2.512109      | 0.           | -0.188636 | 0.002977  |
| 39     | 0.     | Ο.        | 0.            | 0.           | Ο.        | 0.        |
| 40     |        |           |               | ^            | ^         |           |

|        |        | FORCES CO | NTRIBUTED BY | THE SUBSYSTEM | MODE SHAPES |            |
|--------|--------|-----------|--------------|---------------|-------------|------------|
| POINT  | X      | Y         | 2            | THETA-X       | THETA-Y     | THETA-Z    |
| NUMBER | POUNDS | POUNDS    | POUNDS       | IN-LB         | IN-LB       | IN-LB      |
| 1      | Ο.     | 0.        | 0.           | ο.            | 0.          | 0.         |
| 2      | 0.     | -26.521   | -78.899      | 0.            | 916.040     | -307.917   |
| 3      | 0.     | 26.521    | 78.899       | 0.            | 916.040     | -307.917   |
| 4      | 0.     | ٥.        | Ο.           | Ο.            | 0.          | Ο.         |
| 5      | 0.     | -283.498  | 329.155      | 0.            | -649.495    | -26832.642 |
| 6      | 0.     | 902.907   | -215.956     | 0.            | -6102.474   | 3005.351   |
| 33     | 0.     | Ō.        | 0.           | 0.            | 0.          | 0.         |
| 34     | c.     | -1353.939 | 1024.324     | 0.            | -6916.89Q   | -31278.178 |
| 35     | o.     | 841.298   | -150.948     | 0.            | -9855.739   | -14505.715 |

| 36                              | 0.                   | <b>0</b> .                          |                    | ο.                       | 0.                           |                    | 0.               | 0.                       |                                        |                 |                                                  |
|---------------------------------|----------------------|-------------------------------------|--------------------|--------------------------|------------------------------|--------------------|------------------|--------------------------|----------------------------------------|-----------------|--------------------------------------------------|
| 37                              | · O.                 |                                     | 824                | 35.177<br>27.539         |                              |                    | 9.427<br>8.742   | - 1865.379<br>-27269.947 |                                        |                 |                                                  |
|                                 |                      |                                     | THE TYPE           | 3 PHYSI                  | CAL CONNECTI<br>HE ROTOR OR  | NG ELEMEN          |                  | -27203.547               |                                        |                 |                                                  |
| <del></del>                     | RELATIVE             | DEAD                                |                    | I - END                  | JEND                         | FORCE              | IN V D           | IRECTION                 | FORCE IN Z DI                          | DECTION         | FURCE                                            |
| ELEMENT (                       | DISPLACEME<br>INCHES |                                     | LEARANCE<br>INCHES | POINT<br>NUMBER          | POINT                        | I EN               | D                | J END<br>POUNDS          | I END<br>POUNDS                        | J END<br>POUNDS | MAGNITUDE<br>POUNDS                              |
| 5                               | 0.0116               | 0.0100                              | -0.0016            | 4                        | 1                            | -1549.39           | 8                | 1549.398                 | 241,282                                | -241.282        | 1568.072                                         |
|                                 |                      |                                     |                    |                          | G ELEMENTS (<br>OMPONENTS OR |                    |                  |                          |                                        |                 | managan at a timbir) — 1 yang kagangan gan ap ka |
| F1                              |                      | DOTAL                               | ,                  |                          |                              | FORCE IN           |                  |                          | ************************************** |                 |                                                  |
| ELEMENT<br>NUMBER               | END                  | POINT<br>NUMBER                     | X<br>POU           | NDS                      | Y<br>POUNDS                  | <u> </u>           | Z<br>POUNDS      | THETA-Y<br>IN-LB         | THETA-Z<br>IN-LB                       |                 |                                                  |
| 1                               | 1                    | 2                                   | 0.                 |                          | -11889.037                   |                    | 683.969          |                          | Ο.                                     |                 |                                                  |
| 1                               | J                    | 39                                  | 0.                 |                          | 11889.037                    |                    | 683.969          |                          | 0.                                     |                 |                                                  |
| 2                               | <u> </u>             | 3                                   | 0.                 |                          | 4220.579                     |                    | 267.676          |                          | <u>0</u>                               |                 |                                                  |
| 2                               | ñ                    | 40                                  | 0.                 |                          | -4220.579                    |                    | 267.676          |                          | 0.                                     |                 |                                                  |
| 3                               | I                    | 5                                   | 0.                 |                          | -9160.585                    |                    | 040.527          |                          | 0.                                     |                 |                                                  |
| 3                               | J                    | 2                                   | 0.                 |                          | 9160.585                     |                    | 040.527          |                          | 0.                                     |                 |                                                  |
| 44                              | <u>I</u>             | 6                                   | <u> </u>           |                          | 3837.776                     |                    | <u>904 . 136</u> |                          | <u>0.</u>                              |                 |                                                  |
| 4                               | J                    | 3                                   | 0.                 |                          | -3837.776                    | - 1                | 904 . 136        | 0.                       | 0.                                     |                 |                                                  |
| POINT<br>NUMBER                 | ROTOR<br>NUMBER      | OF INERT<br>LB-IN++                 |                    | MOM<br>IN-               | ENT<br>LB                    | MOMENT<br>IN-LB    |                  |                          |                                        |                 |                                                  |
| 36<br>36                        | 1                    | 1842<br>1842                        |                    | - 1279 .<br>502 .        |                              | 187.216<br>679.177 |                  |                          |                                        |                 |                                                  |
| SUMMARY (                       | DF UNBALA            | NCE FORCES-                         |                    |                          |                              |                    | <del></del>      |                          |                                        |                 |                                                  |
| BIRTH<br>TIME<br>SECONDS        | POINT<br>NUMBER      |                                     | NITUDE             | PHASE<br>ANGLE<br>EGREES | FORCE (LB.)<br>Y-DIRECTION   |                    |                  |                          |                                        |                 | ***********                                      |
| 0.                              | 4                    | 1                                   | 5000.              | Ο.                       | 2815.522                     | . 0                | .019             |                          |                                        |                 |                                                  |
| <del></del>                     | ===                  | GENERALIZED                         |                    | <del></del>              |                              |                    |                  |                          |                                        |                 |                                                  |
| GENERALI:<br>COORDINA<br>NUMBER |                      | FORCE DU<br>TO APPLIE<br>FORCES ONL | D                  |                          |                              |                    |                  |                          |                                        |                 |                                                  |
| 1 2                             |                      | -0.019<br>0.019                     | )                  | <del></del>              |                              |                    |                  |                          |                                        |                 |                                                  |
| 3<br>4                          |                      | 0.002<br>0.005                      | <u> </u>           |                          |                              |                    |                  |                          |                                        |                 |                                                  |
| 5                               |                      | -0.002<br>-2815.522                 |                    |                          |                              |                    |                  |                          |                                        |                 |                                                  |
| 6                               |                      |                                     |                    |                          |                              |                    |                  |                          |                                        |                 |                                                  |
| 6<br>7<br>8                     |                      | 2815.522<br>343.916                 | !                  |                          |                              |                    |                  |                          |                                        |                 |                                                  |
| 7                               |                      | 2815.522                            | !<br>•             |                          |                              |                    |                  |                          |                                        |                 |                                                  |

· · · **)** 

| 12     | Ο.     |
|--------|--------|
| 13     | Ο.     |
| <br>14 | <br>0. |
| <br>15 | 0.     |
| 16     | 0      |

| ŀ  | GENERALIZED |              |             |             | GENERALIZED | GENERALIZED | GENERALIZED   |              |
|----|-------------|--------------|-------------|-------------|-------------|-------------|---------------|--------------|
| I  | COORDINATE  | GENERALIZED  | GENERALIZED | GENERALIZED | WEIGHT      | STIFFNESS   | DAMPING VALUE | GENERALIZED  |
| ı  | NUMBER      | DISPLACEMENT | VELOCITY    | FORCE       | POUNDS      | . LB/IN     | (LB-SEC)/IN   | ACCELERATION |
| 1  |             |              |             |             |             |             |               |              |
| 1  | 1           | 0.00033499   | -9.437936   | 434.035     | 1.372E 03   | 0.          | 0             | 122.2217     |
| Н  | 2           | -0.00611250  | 3.241049    | 3185.963    | 1.449E 03   | 0.          | 0.            | 849.7279     |
| H  | 3           | -0.00053598  | 0.599544    | -653.211    | 3.743E 02   | 1.076E 06   | 0.            | -78,9803     |
| H  | 4           | -0.00003920  | -0.072269   | -730.449    | 2.457E 03   | 1.980E 07   | Ο.            | 7.1772       |
| I  | 5           | 0.00013009   | -0.129396   | 290.460     | 1.766E 02   | 3.500E 06   | 0.            | -360.7131    |
| I  | 6           | -0.02845566  | -0.148541   | 10309.892   | 1.372E 03   | 0.          | 0.            | 2903.2063    |
| ]] | 7           | 0.01029312   | 2.493996    | -4056.685   | 1.449E 03   | 0.          | Ο.            | -1081.9581   |
| I  | 8           | 0.00146076   | 0.198019    | 1309.367    | 3.743E 02   | 1.076E 06   | 0.            | -270.9261    |
|    | 9           | -0.00021448  | 0.003487    | -4057.978   | 2.457E 03   | 1.980E 07   | 0.            | 29.6704      |
| H  | 10          | -0.00023399  | -0.049484   | -743.870    | 1.766E 02   | 3.500E 06   | 0.            | 164.3333     |
| I  | 11          | -0.00439892  | 2.248315    | 765.700     | 4.503E 02   | 0.          | 0.            | 657.0524     |
|    | 12          | 0.00043986   | -6.657437   | 17,361      | 1.784E 02   | 0.          | Ο.            | 37.6020      |
| I  | 13          | 0.00008158   | 0.022532    | 374.689     | 1.787E 02   | 4.760E 06   | 9.891E 01     | -34.2763     |
| I  | 14          | 0.00733561   | 1.820610    | -796.251    | 4.503E 02   | 0.          | 0.            | -683.2680    |
| 1  | 15          | -0.02009919  | -0.215352   | 939.607     | 1.784E O2   | 0.          | 0.            | 2035 . 1062  |
| 1  | 16          | 0.00002742   | -0.034861   | 114.564     | 1.787E O2   | 4.760E 06   | 9.891E 01     | -27.0606     |
| 11 |             |              |             |             |             |             |               |              |

OF ACT OF

ROTOF PROPERTIES FOR INDEPENDENT ROTOR (ROTOR 1)-

SPEED: 3000. RPM
ACCELERATION= 0. RPM/SEC
ANGULAR DISPLACEMENT= 7.50000840 REVOLUTIONS

|                            |                | DIS                                            | PLACEMENTS IN                                   | GIVEN DIREC    | TION                             |                                     |
|----------------------------|----------------|------------------------------------------------|-------------------------------------------------|----------------|----------------------------------|-------------------------------------|
| POINT                      | Х              | Y                                              | 2                                               | THETA-X        | THETA-Y                          | THETA-Z                             |
| NUMBER                     | INCHES         | INCHES                                         | INCHES                                          | RADIANS        | RADIANS                          | RADIANS                             |
| 1                          | 0.             | -0.02118278                                    | 0.00458452                                      | 0.             | -0.00008039                      | -0.00028362                         |
| 2                          | 0.             | -0.01835148                                    | 0.00378096                                      | Ο.             | -0.00008039                      | -0.00028369                         |
| 3                          | Ο.             | 0.00450045                                     | -0.00265931                                     | Ο.             | -0.00008062 .                    | -0.00028761                         |
| 4                          | 0.             | -0.03134808                                    | 0.00657465                                      | 0.             | -0.00011985                      | -0.00048880                         |
| 5                          | 0.             | -0.02641861                                    | 0.00538789                                      | 0.             | -0.00011886                      | -0.00047714                         |
| 6.                         | Ο.             | 0.00670637                                     | -0.00389174                                     | 0.             | -0.00011798                      | -0.00038470                         |
| 33                         | 0.             | 0.00738213                                     | -0.00346582                                     | 0.             | -0.00008062                      | -0.00028767                         |
| 34                         | 0.             | -0.01702855                                    | 0.00304497                                      | 0.             | -0.00011728                      | -0.00044832                         |
| 35                         | 0.             | -0.00063050*                                   | -0.00157120                                     | 0,             | -0.00011673                      | -0.00039385                         |
| 3€                         | Ö.             | 0.01033773                                     | -0.00506509                                     | 0.             | -0.00011894                      | -0.00038662                         |
| 37                         | <b>0</b> .     | -0.00701179                                    | 0.00056586                                      | 0.             | -0.00008050                      | -0.00028565                         |
| 38                         | Ŏ              | -0.0Q844051                                    | 0.00073249                                      | 0.             | -0.00011650                      | -0.00041756                         |
| 39                         | 0.             | 0.                                             | Ö.                                              | Q.             | 0,                               | 0.                                  |
| 40                         | Ο.             | 0.                                             | 0.                                              | 0.             | Ο.                               | Ο.                                  |
|                            |                | v                                              | ELOCITIES IN                                    | GIVEN DIRECT   | ION                              |                                     |
| POINT                      | X              | Y                                              | Z                                               | THETA-X        | THETA-Y                          | THETA-Z                             |
| NUMBER                     | IN/SEC         | IN/SEC                                         | IN/SEC                                          | RAD/SEC        | RAD/SEC                          | RAD/SEC                             |
| 1                          | o. ·           | -1.522249                                      | -6.562371                                       | ٥.             | 0.087676                         | -0.028574                           |
| 2                          | 0.             | -1.236602                                      | -5.687009                                       | 0.             | 0.087693                         | -0.028576                           |
| 3                          | Ο.             | 1.052557                                       | 1,372801                                        | 0.             | 0.088802                         | -O.028653                           |
| 4                          | , <b>O</b> .   | -2.140803                                      | -9.686391                                       | Ο,             | 0.152856                         | -0.039846                           |
| 5                          | 0.             | -1.764106                                      | -8.186424                                       | <b>O</b> .     | 0.147781                         | -0.039515                           |
| 6                          | 0.             | 1.555216                                       | 2.049304                                        | Ō.             | 0.119804                         | -0.046193                           |
| U                          | _              | . 1.339200                                     | 2.262391                                        | 0.             | 0.088820                         | -0.028655                           |
| 33                         | Ο.             | . 1.335200                                     | _,,                                             |                |                                  | 0.040005                            |
| 33<br>34                   | 0.<br>0.       | -1.008783                                      | -5.353252                                       | Ō,             | 0.137825                         | -0.040005                           |
|                            |                |                                                |                                                 | Ö,<br>O.       | 0.137825<br>0.122937             | -0.040005                           |
| 34<br>35<br>36             | Ο.             | -1.008783                                      | -5.353252                                       |                | 0.122937<br>0.119439             | -0.044113<br>-0.046959              |
| 34<br>35<br>36<br>37       | 0.<br>0.       | -1.008783<br>0.637592                          | -5.353252<br>-0.292410                          | 0.             | 0.122937<br>0.119439<br>0.088248 | -0.044113                           |
| 34<br>35<br>36<br>37<br>38 | 0.<br>0.<br>0. | -1.008783<br>0.637592<br>2.030940              | -5.353252<br>-0.292410<br>3.205218              | 0.<br>0.       | 0.122937<br>0.119439             | -0.044113<br>-0.046959              |
| 34<br>35<br>36<br>37       | 0.<br>0.<br>0. | -1.008783<br>0.637592<br>2.030940<br>-0.093730 | -5.353252<br>-0.292410<br>3.205218<br>-2.181473 | 0.<br>0.<br>0. | 0.122937<br>0.119439<br>0.088248 | -0.044113<br>-0.046959<br>-0.028614 |

|        |        | FORCES CO | NTRIBUTED BY | THE SUBSYSTE | M MODE SHAPES |           |
|--------|--------|-----------|--------------|--------------|---------------|-----------|
| POINT  | X      | Y         | Z            | THETA-X      | THETA-Y       | THETA-Z   |
| NUMBER | POUNDS | POUNDS    | POUNDS       | IN-LB        | IN-LB         | IN-LB     |
| 1      | 0.     | 0.        | 0.           | 0.           | 0.            | Ο.        |
| 2      | O. '   | -62.729   | 3.664        | Ο.           | -42.538       | -728.307  |
| 3      | 0.     | 62.729    | -3.664       | 0.           | -42.538       | -728.307  |
| 4      | Ο.     | 0.        | 0.           | 0.           | 0.            | 0.        |
| 5      | 0.     | 365.296   | 29.667       | 0.           | 1930.647      | 26251.171 |
| 6      | 0.     | -898.295  | 46.977       | 0.           | -1761.441     | 575.686   |
| 33     | Ö.     | Ō.        | 0.           | 0.           | 0.            | 0.        |
| 34     | Ο.     | 1476.109  | 18.515       | 0.           | 1274.031      | 32342.404 |
| 35     | Ο.     | -819.840  | 52.683       | Ο.           | -778.288      | 17864.532 |

| •             |                                       |                       |                         |                 |                                | (                |                       |                     |                 |                 | (                   |
|---------------|---------------------------------------|-----------------------|-------------------------|-----------------|--------------------------------|------------------|-----------------------|---------------------|-----------------|-----------------|---------------------|
| 36            | 0.                                    |                       | 0.                      | 0.              | 0.                             |                  | 0.                    | Ο.                  |                 |                 |                     |
| 37<br>38      | 0.<br>0.                              |                       | 27.968                  | -1.634          | 4 0.                           |                  | 257.698               | -4412.128           |                 |                 |                     |
| 38            | <u> </u>                              |                       | 482.042                 | 54.395          | 5 0.                           |                  | 308 . 477             | 29767.813           |                 |                 |                     |
|               |                                       |                       |                         |                 | ICAL CONNECTI<br>THE ROTOR OR  |                  | ENTS.                 |                     |                 |                 |                     |
|               | RELATIV                               |                       |                         |                 | JEND                           |                  | CE IN Y DI            |                     | FORCE IN Z DI   |                 | FORCE               |
| NUMBER        | DISPLACEN<br>INCHES                   |                       | D CLEARANC<br>ES INCHES | CE POINT NUMBER |                                | I E<br>POUN      |                       | J END<br>POUNDS     | I END<br>POUNDS | J END<br>POUNDS | MAGNITUDE<br>POUNDS |
|               |                                       |                       |                         |                 | ····                           |                  |                       |                     |                 |                 |                     |
| 5             | 0.0104                                | 0.010                 | 00 -0.000               | 04 4            | 1                              | 351.6            | 503                   | -351.603            | -68.836         | 68.836          | 358.278             |
|               |                                       |                       |                         |                 | NG ELEMENTS (<br>COMPONENTS OR |                  |                       |                     |                 |                 |                     |
| J. KING L     | ZAMI EK EEL                           | .MLIVI 37 L           | ALKT ON THE             | , LINGINE C     |                                |                  |                       |                     |                 |                 |                     |
| ELEMENT       |                                       | POINT                 |                         | X               | Y                              | FORCE IN         | N GIVEN DI<br>Z       | IRECTION<br>THETA-Y | . THETA-2       |                 |                     |
| NUMBER        | END                                   | NUMBER                | . F                     | POUNDS          | POUNDS                         |                  | POUNDS                | IN-LB               | IN-LB           |                 |                     |
| 1             | 1                                     | 2                     |                         | ٥.              | 9284.354                       |                  | - 1390.968            | 0.                  | Ο.              |                 |                     |
| 1             | J                                     | 39                    |                         | 0.              | -9284.354                      |                  | 1390.968              | 0.                  | 0.              |                 |                     |
| 2 2           | I J                                   | <u>3</u><br>40        |                         | 0.              | -2342.675<br>2342.675          |                  | 1209.079<br>-1209.079 | <u>0.</u><br>0.     | <u>0.</u><br>0. |                 |                     |
| 3             | I                                     | 5                     |                         | 0.              | 8159.802                       | -                | -1167.863             | 0.                  | 0.              |                 |                     |
| 3             | J                                     | 2<br>6                |                         | 0.<br>0.        | -8159.802<br>-2294.221         |                  | 1167.863              | 0.<br>0.            | 0.<br>0.        |                 |                     |
|               | <del></del> j                         | 3                     |                         | 0.              | 2294.221                       |                  | -1113.588             | 0.                  | 0.              |                 |                     |
| THE GYRO      | SCOPIC FO                             | RCES ACT              | ING ON THE              | ROTOR(S)        | ARF-                           |                  |                       |                     |                 |                 |                     |
|               |                                       |                       |                         |                 |                                |                  |                       |                     |                 |                 |                     |
| POINT         | ROTOR                                 |                       | MOMENT<br>NERTIA        |                 | AXIS<br>MENT                   | Z-AXIS<br>MOMENT |                       |                     |                 |                 |                     |
| NUMBER        | NUMBER                                |                       | IN++2                   |                 | -LB                            | IN-LB            |                       |                     |                 |                 |                     |
| 4             | 1                                     | <del></del>           | 184205.                 | 5967.           |                                | 892.702          |                       |                     |                 |                 |                     |
| 36            | 1                                     |                       | 184205                  | 7032.           | . 891 17                       | 887.896          |                       |                     |                 |                 |                     |
| SUMMARY       | OF UNBAL                              | ANCE FOR              | CES-                    |                 |                                |                  |                       |                     |                 |                 |                     |
| BIRTH         |                                       |                       |                         | PHASE           | •                              |                  |                       |                     |                 |                 |                     |
| TIME          | POINT                                 | ROTOR                 | MAGNITUDE               | ANGLE           | FORCE (LB.)                    |                  |                       |                     |                 |                 |                     |
| SECONDS       | NUMBER                                | NUMBER                | GM-IN                   | DEGREES         | Y-DIRECTION                    | Z-DIRE           | ECTION                |                     |                 |                 |                     |
| Ο.            | 4                                     | 1                     | 5000.                   | Ο.              | -2815.522                      | -                | -0.037                |                     |                 |                 |                     |
|               |                                       | GENERAL               | IZED                    |                 |                                |                  |                       |                     |                 |                 |                     |
| GENERALI      |                                       | FORC                  | E DUE                   |                 |                                |                  | <del></del> ,         |                     |                 |                 |                     |
| COORDINA      |                                       | TO API                |                         |                 |                                |                  |                       |                     |                 |                 |                     |
|               | · · · · · · · · · · · · · · · · · · · |                       |                         |                 |                                |                  |                       |                     |                 |                 |                     |
| 1 2           |                                       |                       | .037<br>.037            |                 |                                |                  |                       |                     |                 |                 |                     |
| 3             |                                       | 0                     | . 004                   |                 |                                |                  |                       |                     |                 |                 |                     |
| <u>4</u><br>5 |                                       |                       | .010                    |                 |                                |                  |                       |                     |                 |                 |                     |
| 6             |                                       | 2815                  | . 522                   |                 |                                |                  |                       |                     |                 |                 |                     |
| 7<br>8        |                                       | -2815                 |                         |                 |                                |                  |                       |                     |                 |                 |                     |
| 9             |                                       | - <u>343</u><br>- 773 |                         | ~               |                                |                  |                       |                     |                 | <del></del>     |                     |
| 10            |                                       |                       | .716                    |                 |                                |                  |                       |                     |                 |                 |                     |
| 5.1           |                                       | 0                     | •                       |                 |                                |                  |                       |                     |                 |                 |                     |

| 12          | . 0.         | •           |             |             |             |                            |               |  |
|-------------|--------------|-------------|-------------|-------------|-------------|----------------------------|---------------|--|
| 13          | 0.           |             |             |             |             |                            |               |  |
| 14          | 0.           |             |             |             |             |                            |               |  |
| 15          | 0.           |             |             |             |             |                            |               |  |
| 16          | 0.           |             |             |             |             |                            |               |  |
|             |              |             |             |             | <b>_</b>    |                            |               |  |
| GENERALIZED |              |             |             | GENERALIZED | GENERALIZED | GENERALIZED                |               |  |
| COORDINATE  | GENERALIZED  | GENERALIZED | GENERALIZED | WEIGHT      | STIFFNESS   | DAMPING VALUE              | GENERALIZED   |  |
| NUMBER      | DISPLACEMENT | VELOCITY    | FORCE       | POUNDS      | LB/IN ·     | (LB-SEC)/IN                | ACCELERATION  |  |
| 1           | -0.00582716  | 6.463391    | 2154.041    | 1.372E 03   | 0.          | 0.                         | 606.5656      |  |
| 2           | 0.00075243   | -3.185382   | -123,148    | 1.449E Q3   | Ö.          | <del></del> <del>0</del> . | -32.8447      |  |
| 3           | 0.00001556   | -0.470272   | 42.252      | 3.743E 02   | 1.076E 06   | 0.                         | 26.3343       |  |
| 4           | -0.00002654  | 0.063997    | -505.402    | 2.457E 03   | 1.980E 07   | 0.                         | 3.1560        |  |
| 5           | -0.00000437  | -0.021611   | 21.704      | 1.766E 02   | 3.500E 06   | 0.                         | 80.9803       |  |
| 6           | 0.02089362   | 2.089969    | -6714.912   | 1.372E 03   | 0.          | 0.                         | - 1890 . 8806 |  |
| 7           | -0.01028442  | -0.072127   | 3401.662    | 1.449E 03   | 0.          | 0.                         | 907.2569      |  |
| 8           | -0.00160249  | 0.117351    | - 1610.352  | 3.743E 02   | 1.076E 06   | 0.                         | 117.6279      |  |
| 9           | 0.00018456   | 0.014912    | 3571.934    | 2.457E 03   | 1.980E 07   | 0.                         | - 12.9405     |  |
| 10          | 0.00024142   | -0.027621   | 910.685     | 1.766E 02   | 3.500E 06   | 0.                         | 143.7962      |  |
| 11          | 0.00056314   | -2.168310   | -58.778     | 4.503E 02   | 0.          | 0.                         | -50.4378      |  |
| 12          | -0.00402517  | 4.412381    | 186.041     | 1.784E Q2   | 0.          | 0.                         | 402.9487      |  |
| 13          | -0.00000379  | 0.018320    | -9.226      | 1.787E 02   | 4.760E 06   | 9.891E 01                  | 15.1248       |  |
| 14          | -0.00696519  | -0.092807   | 724.495     | 4.503E 02   | 0.          | 0.                         | 621.6937      |  |
| 15          | 0.01428245   | 1.430725    | -586.801    | 1.784E Q2   | 0.          | Ο.                         | - 1270 . 9598 |  |
| 16          | 0.00006486   | 0.001283    | 306.646     | 1.787E Q2   | 4.760E 06   | 9.891E 01                  | -4.7825       |  |

1990 W 1990 W 1943 X

ROTOR PROPERTIES FOR INDEPENDENT ROTOR (ROTOR 1)-

| SPEED=   | 3000. RF    |                          |                            |              |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------|-------------|--------------------------|----------------------------|--------------|--------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACCELERA |             | O. RPM/SEC               |                            |              |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ANGULAR  | DISPLACEMEN | IT= 10.000               | O1156 REVOLUT              | IONS         |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |             |                          |                            |              |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |             |                          | DI ACEMENTE TA             | CTUEN DIDEC  | T 10N                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| POINT    | x           | λ ρτ2                    | PLACEMENTS IN<br>Z         | THETA-X      | THETA-Y                  | THETA-Z                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| NUMBER   | INCHES      | INCHES                   | INCHES                     | RADIANS      | RADIANS                  | RADIANS                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| NOMBER   | 11401123    | THORE 3                  | INCHES                     | KADIANS      | KWD1 MI42                | KADIANS                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1        | 0.          | 0.02728557               | -0.00532500                | Ō.           | 0.00009922               | 0.00038425               | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2        | Ö.          | 0.02344330               | -0.00433106                | Ö.           | 0.00009920               | 0.00038425               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3        | 0.          | -0.00730348              | 0.00354902                 | 0.           | 0.00009780               | 0.00038442               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4        | 0.          | 0.03863449               | -0.00727169                | 0            | 0.00013899               | 0.00061479               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5        | 0.          | 0.03247054               | -0.00591165                | 0.           | 0.00013797               | 0.00060234               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6        | Ο.          | -0.01070009              | 0.00512456                 | 0.           | 0.00014283               | 0.00051731               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 33       | 0.          | -0.01114790              | 0.00452510                 | 0.           | 0.00009778               | 0.00038442               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 34       | <u>0.</u>   | 0.02062662               | -0.00320969                | <u>o.</u>    | 0.00013735               | 0.00057320               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 35       | 0.          | -0.00076177              | 0.00228454                 | 0.           | 0.00014059               | 0.00052288               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 36       | 0.          | -0.01566360              | 0.00656417                 | 0.           | 0.00014378               | 0.00052112               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 37<br>38 | 0.          | 0.00807360<br>0.00957046 | -0.00036040<br>-0.00049036 | 0.<br>0.     | 0.00009850               | 0.00038433<br>0.00054382 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 39       | 0.<br>0.    | 0.00957046               | 0.                         | <u>0.</u>    | 0.00013846               | 0.00054382               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 40       | 0.          | 0.<br>0.                 | 0.<br>0.                   | 0.<br>0.     | 0.                       | 0.                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | ٠.          | <b>.</b>                 | <b>J</b> .                 | <b>J.</b>    | •                        | <b>J.</b>                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |             | V                        | ELOCITIES IN               | SIVEN DIRECT | ION                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| POINT    | X           | Y                        | Ž                          | THETA-X      | THETA-Y                  | THETA-Z                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| NUMBER   | IN/SEC      | IN/SEC                   | IN/SEC                     | RAD/SEC      | RAD/SEC                  | RAD/SEC                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |             |                          |                            |              |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1        | 0.          | 1.739153                 | 8.663948                   | <u> </u>     | -0.122617                | 0.034446                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2        | 0.          | 1.393604                 | 7.437793                   | 0.           | -0.122617                | 0.034432                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3        | 0.          | -1.326227                | -2.372012                  | 0.           | -0.122628                | 0.033564                 | ) F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4        | 0.          | 2.364448                 | 12.248238                  | 0.           | -0.194153                | 0.050795                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <u>5</u> | <u>0.</u>   | 1.890633                 | 10.304116                  | <u>.0.</u>   | -0.190481<br>-0.166855   | 0.049246<br>0.048028     | <u>&amp;\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}}{2}_{\frac{1}{2}_{\frac{1}{2}_{\frac{1}}{2}_{\frac{1}}_{\frac{1}{2}_{\frac{1}}}}}}}}}}}}}}}}}}}}}}}</u> |
| 33       | 0.<br>0.    | -1.89/122                | -3.483391<br>-3.598308     | 0.<br>0.     | -0. 100855<br>-0. 122628 | 0.048028                 | \$ <del>Z</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 34       | 0.          | 0.974188                 | 6.557749                   | 0.<br>0.     | -0.182016                | 0.047624                 | $\mathcal{R}  \mathcal{E}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 35       | 0.          | -0.907108                | -0.274314                  | 0.<br>0.     | -0.167940                | 0.047024                 | $\delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 36       | <del></del> | -2.391637                | -5.091035                  | 0.           | -0.168279                | 0.047518                 | - CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 37       | 0.          | 0.014608                 | 2.533133                   | o.           | -0.122623                | 0.033998                 | A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 38       | 0.          | 0.052904                 | 3.039241                   | 0.           | -0.173656                | 0.047614                 | に発                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 39       | 0.          | 0.                       | 0.                         | 0.           | 0.                       | 0.                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 40       | 0.          | 0.                       | Ö.                         | O.           | 0.                       | 0.                       | ORIGINAL PAGE IS OF POOR QUALITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | •           |                          |                            |              |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | u           |                          |                            |              | EM MODE SHAPES           | THETA 7                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| POINT    | X X         | Y                        | Z                          | THETA-X      | THETA-Y                  | THETA-Z                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| NUMBER   | POUNDS      | POUNDS                   | POUNDS                     | IN-LB        | IN-LB                    | IN-LB                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1        | Ο.          | 0.                       | 0.                         | 0.           | Ο.                       | ٥.                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2        | 0.<br>0.    | 2.686                    | 22.258                     | 0.<br>0.     | -258.418                 | 31.190                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | 0.          | -2.686                   | -22.258                    | 0.           | -258.418                 | 31.190                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4        | Ö.          | 0.                       | 0.                         | Õ.           | 0.                       | 0.                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5        | Ŏ.          | -277.741                 | -99.857                    | Ö.           | -1612.481                | -27456.883               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6        | O.          | 916.022                  | 22.478                     | Õ.           | 2114.988                 | 3290.225                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 33       | Ō.          | 0.                       | 0.                         | 0.           | 0.                       | 0.                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 34       | Ο.          | - 1346.020               | -298.117                   | 0.           | 344.260                  | -31770.476               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 35       | Ο.          | 855.404                  | 3.285                      | 0.           | 2395.501                 | -14491.698               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36                                                                             | Ο.               | 0                                                                                               | •                                         | Ο.             | Ο.          | 0.          | 0.         |         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------|----------------|-------------|-------------|------------|---------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| THE FOLLOWING VALUES ARE FOR THE TYPE 3 PHYSICAL CONNECTING ELEMENTS. FORCES ARE THOSE THAT THE ELEMENT EXERTS ON THE ROTOR OR CASE- FORCES ARE THOSE THAT THE ELEMENT EXERTS ON THE ROTOR OR CASE- FLEMENT DISPLACEMENT BAND CLEARANCE POINT POINT 1 END JEND 1 END POUNDS THE END POUNDS POUNDS POUNDS THE END POUNDS POUNDS POUNDS THE END | 37                                                                             | ˙ O.             | - 1                                                                                             | . 198                                     | -9.924         | 0.          | -1565.515   | 188.953    |         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FORCES ARE THOSE THAT THE ELEMENT EXERTS ON THE ROTOR OR CASE-  ELEMENT DISPLACEMENT BEAD  LICENSIS TRACES THAT THE TYPE S PHYSICAL CONNECTING ELEMENTS CUNCOUPLED POINT  THE FORCES THAT THE TYPE S PHYSICAL CONNECTING ELEMENTS CUNCOUPLED POINT  SYRING-DAMPER ELEMENTS EXERT ON THE ENGINE COMPONENTS OR GROUND ARE-  ELEMENT THE TYPE S PHYSICAL CONNECTING ELEMENTS CUNCOUPLED POINT  FORCE IN GIVEN DIRECTION  THE FORCES THAT THE TYPE S PHYSICAL CONNECTING ELEMENTS CUNCOUPLED POINT  FORCE IN GIVEN DIRECTION  THE FORCES THAT THE TYPE S PHYSICAL CONNECTING ELEMENTS OR GROUND ARE-  ELEMENT THE TYPE S PHYSICAL CONNECTING ELEMENTS OR GROUND ARE-  ELEMENT THE TYPE S PHYSICAL CONNECTING ELEMENTS OR GROUND ARE-  ELEMENT THE TYPE S PHYSICAL CONNECTING ELEMENTS OR GROUND ARE-  ELEMENT THE TYPE S PHYSICAL CONNECTING ELEMENTS OR GROUND ARE-  ELEMENT THE TYPE S PHYSICAL CONNECTING ELEMENTS OR GROUND ARE-  THE TYPE THAT THE TYPE S PHYSICAL CONNECTING ELEMENTS OR GROUND ARE-  ELEMENT THE TYPE S PHYSICAL CONNECTING ELEMENTS OR GROUND ARE-  THE TYPE THAT THE TYPE S PHYSICAL CONNECTING ELEMENTS OR GROUND ARE-  THE TYPE THAT THE TYPE S PHYSICAL CONNECTING ELEMENTS OR GROUND ARE-  THE TYPE THAT THE TYPE S PHYSICAL CONNECTING ELEMENTS OR GROUND ARE-  THE TYPE THAT THE TYPE S PHYSICAL CONNECTING ELEMENTS OR GROUND ARE-  THE TYPE THAT THE TYPE S PHYSICAL CONNECTING ELEMENTS OR GROUND ARE-  THE TYPE THAT THE TYPE S PHYSICAL CONNECTING ELEMENTS OR GROUND ARE-  THE TYPE THAT THE TYPE S PHYSICAL CONNECTING ELEMENTS OR GROUND ARE-  THE TYPE THAT THE TYPE S PHYSICAL CONNECTING ELEMENTS OR GROUND ARE-  THE TYPE THAT THE TYPE S PHYSICAL CONNECTING ELEMENTS OR GROUND ARE-  THE TYPE THAT THE TYPE S PHYSICAL CONNECTING ELEMENTS OR GROUND ARE-  THE TYPE THAT THE TYPE S PHYSICAL CONNECTING ELEMENTS OR GROUND ARE-  THE TYPE THAT THE TYPE S PHYSICAL CONNECTING ELEMENTS OR GROUND ARE-  THE TYPE THAT THE TYPE S PHYSICAL CONNECTING ELEMENTS OR GROUND ARE-  THE TYPE THAT THE TYPE S PHYSICAL CONNECTING ELEMENTS OR GROUND ARE-  THE TYPE THAT THE TYPE S PHYSICAL  | 38                                                                             | <u> </u>         | 548                                                                                             | . 401                                     | <u>-41.802</u> | <u>0.</u>   | 1837.753    | -27534.555 |         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RELINEARY DISPLACEMENT   BAND   CLEARANCE   POINT   POINT   1 END   POINDS   POUNDS   POUND   |                                                                                | ARE THOSE        | THAT THE EL                                                                                     |                                           | TS ON TO       | HE ROTOR OR | CASE-       |            |         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NUMBER   INCHES   I   | CI CMENT                                                                       |                  |                                                                                                 | CLEADANCE                                 |                |             |             |            |         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| THE FORCES THAT THE TYPE 5 PHYSICAL CONNECTING ELEMENTS (UNCOUPLED POINT SPRING-DAMPER ELEMENTS) EXERT ON THE ENGINE COMPONENTS OR GROUND ARE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                |                  |                                                                                                 |                                           |                |             |             |            |         |                                        | POUNDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SPRING-DAMPER ELEMENTS   EXERT ON THE ENGINE COMPONENTS OR GROUND ARE-   Components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                              | 0.0115           | 0.0100                                                                                          | -0.0015                                   | 4              | 1           | -1492.869   | 1492.869   | 256.073 | -256.073                               | 1514.672                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Refer   Number   Pount   Number   Pount   Po   |                                                                                |                  |                                                                                                 |                                           |                |             |             |            |         | ·                                      | Management to the second control of the seco |
| NUMBER   END   NUMBER   POUNDS   POUNDS   POUNDS   IN-LB   IN-LB     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b></b>                                                                        |                  |                                                                                                 |                                           |                |             |             |            |         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                | END              |                                                                                                 |                                           |                |             |             |            |         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2 I 3 O. 3768.227 -1566.169 O. O. 2 J 40 O3768.227 -1566.169 O. O. 3 I 5 O3148.552 1077.071 O. O. 4 I 5 O. 3414.552 1077.071 O. O. 4 I 6 O. 3496.899 -1380.307 O. O.  THE GYROSCOPIC FORCES ACTING ON THE ROTOR(S) ARE-  POINT ROTOR OF INERTIA MOMENT MOMENT MOMENT NUMBER NUMBER LB-IN-2 IN-LB IN-LB  1 1842057607.362 -29077.600 36 I 1842057116.568 -25202.552  SUMMARY OF UNBALANCE FORCES-  BIRTH TIME POINT ROTOR NUMBER MAGNITUDE ANGLE FORCE (LB.) FORCE (LB.) SECONDS NUMBER NUMBER GH-IN DEGREES Y-DIRECTION  O. 4 I 5000. O. 2815.522 0.055  CENERALIZED FORCES ONLY  1 -0.055 2 0.0055 3 0.007 4 0.0015 5 -0.006 6 -2815.522 7 2815.522 7 2815.522 7 2815.522 8 343.916 9 7773.705 10 -291.716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                |                  |                                                                                                 |                                           |                |             |             |            |         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                | _                |                                                                                                 | _                                         |                |             |             |            |         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 I 5 09114.552 1077.071 0. 0. 3 J 2 0. 9114.552 -1077.071 0. 0. 4 I 6 0. 3498.899 -1380.307 0. 0.  THE GYROSCOPIC FORCES ACTING ON THE ROTOR(S) ARE-  POLAT ROTOR OF INERTIA MOMENT MUMBER NUMBER LB-IN+*2 IN-LB IN-LB  4 I 1842057607.362 -29077.600 36 I 1842057116.568 -25202.552  SUMMARY OF UNBALANCE FORCES-  BITH TIME POINT ROTOR MAGNITUDE ANGLE FORCE (LB.) FORCE (LB.) SECONDS NUMBER NUMBER GH-IN DEGREES Y-DIRECTION 2-DIRECTION  O. 4 I 5000. 0. 2815.522 0.055  GENERALIZED GENERALIZED FORCES ONLY  1 -0.055 3 0.007 4 0.015 5 -0.006 6 -2815.522 7 2815.522 7 2815.522 7 2815.522 8 343.916 9 773.705 10 -291.716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                |                  |                                                                                                 |                                           |                |             |             |            |         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 J 2 O. 9114.552 -1077.071 O. O. 4 J 6 O. 3496.899 -1380.307 O. O. THE GYROSCOPIC FORCES ACTING ON THE ROTOR(S) ARE-  POINT ROTOR NUMBER OF INETIA MOMENT MOMENT MOMENT NUMBER N |                                                                                | -                |                                                                                                 |                                           |                |             |             |            |         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ### A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                              | t J              | 2                                                                                               | 0.                                        |                |             |             | 0.         |         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| THE GYROSCOPIC FORCES ACTING ON THE ROTOR(S) ARE-  POINT ROTOR NUMBER UB-IN-*2 IN-LB IN-LB  4 1 1842057607.362 -29077.600 36 1 1842057116.568 -25202.552  SUMMARY OF UNBALANCE FORCES-  BIRTH TIME POINT ROTOR MAGNITUDE ANGLE FORCE (LB.) FORCE (LB.) SECONDS NUMBER NUMBER GM-IN DEGREES Y-DIRECTION Z-DIRECTION  O. 4 1 5000. O. 2815.522 0.055  GENERALIZED FORCE DUE COURDINATE TO APPLIED NUMBER FORCES ONLY  1 -0.055 2 0.055 3 0.007 4 0.015 5 -0.006 6 -2815.522 7 2815.522 7 2815.522 8 343.916 9 773.705 10 -291.716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                | I                |                                                                                                 |                                           |                |             |             |            |         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 36 1 1842057116.568 -25202.552  SUMMARY OF UNBALANCE FORCES-  BIRTH TIME POINT ROTOR MAGNITUDE ANGLE FORCE (LB.) FORCE (LB.) SECONDS NUMBER NUMBER GM-IN DEGREES Y-DIRECTION Z-DIRECTION  O. 4 1 5000. O. 2815.522 0.055  GENERALIZED FORCE DUE TO APPLIED FORCES ONLY  1 -0.055 2 0.055 3 0.007 4 0.015 5 -0.006 6 -2815.522 7 2815.522 8 343.916 9 773.705 10 -291.716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | POINT                                                                          |                  | OF INER                                                                                         | TIA                                       | MOM            | ENT         | MOMENT      |            | ·       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BIRTH TIME SECONDS NUMBER ROTOR MAGNITUDE ANGLE FORCE (LB.) FORCE (LB.)  O. 4 1 5000. O. 2815.522 0.055  GENERALIZED FORCE DUE TO APPLIED FORCES ONLY  1 -0.055 2 0.055 3 0.007 4 0.015 5 -0.006 6 -2815.522 7 2815.522 7 2815.522 8 343.916 9 773.705 10 -291.716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                |                  |                                                                                                 |                                           |                |             |             |            |         | kiri — u-ui-, uskalaan - u-ti -u-u     | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TIME SECONDS NUMBER ROTOR NUMBER OF STATE OF SECONDS NUMBER NUMBER OF STATE OF SECONDS | SUMMARY                                                                        | OF UNBALA        | ANCE FORCES                                                                                     | -                                         |                |             |             | ~-~        |         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GENERALIZED  GENERALIZED  FORCE DUE  COORDINATE  TO APPLIED  NUMBER  FORCES ONLY  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TIME                                                                           | POINT            |                                                                                                 |                                           | PHASE          |             |             |            |         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GENERALIZED FDRCE DUE COORDINATE TD APPLIED NUMBER FORCES ONLY  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                | NUMBER           |                                                                                                 |                                           |                |             |             |            |         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| COORDINATE NUMBER FORCES ONLY  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.                                                                             |                  | NUMBER .                                                                                        | GM-IN D                                   | EGREES         | Y-DIRECTION | Z-DIRECTION |            |         |                                        | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2 0.055<br>3 0.007<br>4 0.015<br>5 -0.006<br>6 -2815.522<br>7 2815.522<br>8 343.916<br>9 773.705<br>10 -291.716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.                                                                             |                  | NUMBER 1 GENERALIZE                                                                             | <u>GM-IN D</u><br>5000.<br>D              | EGREES         | Y-DIRECTION | Z-DIRECTION |            |         | ······································ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4 0.015 5 -0.006 6 -2815.522 7 2815.522 8 343.916 9 773.705 10 -291.716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GENERAL I<br>COORDINA                                                          | 4<br>IZED<br>ATE | 1 GENERALIZE FORCE D TO APPLI                                                                   | GM-IN D<br>5000.<br>D<br>UE<br>ED         | EGREES         | Y-DIRECTION | Z-DIRECTION |            |         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5 -0.006<br>6 -2815.522<br>7 2815.522<br>8 343.916<br>9 773.705<br>10 -291.716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GENERAL I<br>COORD I NA<br>NUMBER<br>1<br>2                                    | 4<br>IZED<br>ATE | GENERALIZE  FORCE DI  TO APPLII  FORCES ONI  -0.05                                              | GM-IN D 5000.  D UE ED LY 5               | EGREES         | Y-DIRECTION | Z-DIRECTION |            |         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7 2815.522<br>8 343.916<br>9 773.705<br>10 -291.716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GENERAL I<br>COORD I NA<br>NUMBER<br>1<br>2                                    | 4<br>IZED<br>ATE | GENERALIZE FORCE DI TO APPLII FORCES ONI -0.05 0.05 0.00                                        | GM-IN D 5000.  D UE ED LY 5 5 7           | EGREES         | Y-DIRECTION | Z-DIRECTION |            |         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8 343.916<br>9 773.705<br>10 -291.716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GENERALI<br>CODRDINA<br>NUMBER<br>1<br>2<br>3<br>4                             | 4<br>IZED<br>ATE | GENERALIZE FORCE DI TO APPLII FORCES ONI -0.05 0.05 0.00 -0.01                                  | GM-IN D 5000.  D UE ED LY 5 5 7 5 6       | EGREES         | Y-DIRECTION | Z-DIRECTION |            |         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9 773.705<br>10 -291.716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GENERALI<br>CODRDINA<br>NUMBER<br>1<br>2<br>3<br>4<br>5<br>6                   | 4<br>IZED<br>ATE | TO APPLII FORCES ON  -0.05 0.05 0.05 0.00 -0.01 -0.00 -2815.52                                  | GM-IN D 5000.  D UE ED LY 5 5 7 5 6       | EGREES         | Y-DIRECTION | Z-DIRECTION |            |         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GENERALI<br>COORDINA<br>NUMBER<br>1<br>2<br>3<br>4<br>5<br>6<br>7              | 4<br>IZED<br>ATE | TO APPLII<br>FORCES ON:<br>-0.05:<br>0.05:<br>0.00:<br>0.01:<br>-0.00:<br>-2815.52:<br>2815.52: | GM-IN D 5000.  D UE ED LY 5 5 6 2 2       | EGREES         | Y-DIRECTION | Z-DIRECTION |            |         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GENERAL I<br>COORD I NA<br>NUMBER<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8      | 4<br>IZED<br>ATE | TO APPLIF FORCES ON 0.05 0.05 0.00 0.01 -0.00 -2815.52 2815.52 343.91                           | GM-IN D 5000.  D UE ED LY 5 5 7 6 2 2 6   | EGREES         | Y-DIRECTION | Z-DIRECTION |            |         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GENERAL I<br>COORD I NA<br>NUMBER<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 4<br>IZED<br>NTE | TO APPLIA FORCES ON  -0.05 0.05 0.00 -0.01 -0.00 -2815.52 2815.52 343.91 773.70 -291.710        | GM-IN D 5000.  D UE ED LY 5 5 7 6 2 2 6 5 | EGREES         | Y-DIRECTION | Z-DIRECTION |            |         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

 $\mathcal{F}_{i}$  ,  $\mathcal{F}_{i}$ 

| 12 | 0. |
|----|----|
| 13 | 0. |
| 14 | 0. |
| 15 | 0. |
| 16 | 0  |

|               |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GENERALIZED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GENERALIZED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GENERALIZED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GENERAL I ZED | GENERALIZED                                                                                                                                      | GENERAL I ZED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WEIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STIFFNESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DAMPING VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GENERAL I ZED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DISPLACEMENT  | VELOCITY                                                                                                                                         | FORCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | POUNDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LB/IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (LB-SEC)/IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ACCELERATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.00692529    | -8 688663                                                                                                                                        | -2516 50R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.372E 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -708 6342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <del>-</del> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               | • •                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -5.8078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               |                                                                                                                                                  | • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ö.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ö.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -521.4445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -0.00002301   |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.787E Q2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.760E 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.891E 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.9511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.00807161    | 0.024914                                                                                                                                         | -965.306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.503E 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -828.3349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -0.01921673   |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1966.2032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.787E 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.891E 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,1765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               | 0.00692529 -0.00036806 0.00008765 0.0002679 -0.0003465 -0.02720978 0.01128086 0.00147599 -0.0002341 -0.00037694 0.00492505 -0.0002301 0.00807161 | DISPLACEMENT         VELOCITY           0.00692529         -8.688663           -0.00036806         3.521061           0.0008765         0.410984           0.0002679         -0.069238           -0.0003465         -0.070835           -0.02720978         -2.381923           0.01128086         -0.007515           0.00147599         0.009714           -0.00023441         0.070133           -0.00037694         2.533002           0.00492505         -6.131128           -0.00002301         -0.000182           0.00807161         0.024914           -0.01921673         -1.699894 | DISPLACEMENT         VELOCITY         FORCE           0.00692529         -8.688663         -2516.508           -0.00036806         3.521061         -47.109           0.00008765         0.410984         124.969           0.00002679         -0.069238         516.864           -0.0003465         -0.070835         -46.509           -0.02720978         -2.381923         9852.111           0.01128086         -0.007515         -4295.000           0.00147599         0.009714         1447.442           -0.00023441         0.070133         -747.694           -0.00037694         2.533002         -6.768           0.00492505         -6.131128         -240.751           -0.0002301         -0.000182         -103.573           0.00807161         0.024914         -965.306           -0.01921673         -1.699894         907.795 | GENERALIZED DISPLACEMENT         GENERALIZED VELOCITY         GENERALIZED FORCE         WEIGHT POUNDS           0.00692529         -8.688663         -2516.508         1.372E 03           -0.00036806         3.521061         -47.109         1.449E 03           0.00008765         0.410984         124.969         3.743E 02           0.00002679         -0.069238         516.864         2.457E 03           -0.00003465         -0.070835         -46.509         1.766E 02           -0.02720978         -2.381923         9852.111         1.372E 03           0.01128086         -0.007515         -4295.000         1.449E 03           0.00147599         0.009714         1447.442         3.743E 02           -0.00023441         0.070133         -747.694         1.766E 02           -0.00037694         2.533002         -6.768         4.503E 02           0.00492505         -6.131128         -240.751         1.784E 02           -0.0002301         -0.000182         -103.573         1.787E 02           0.00807161         0.024914         -965.306         4.503E 02           -0.01921673         -1.699894         907.795         1.784E 02 | GENERALIZED DISPLACEMENT         GENERALIZED VELOCITY         GENERALIZED FORCE         WEIGHT POUNDS         STIFFNESS LB/IN           0.00692529         -8.688663         -2516.508         1.372E 03         0.           -0.00036806         3.521061         -47.109         1.449E 03         0.           0.00008765         0.410984         124.969         3.743E 02         1.076E 06           0.00002679         -0.069238         516.864         2.457E 03         1.980E 07           -0.0003465         -0.070835         -46.509         1.766E 02         3.500E 06           -0.02720978         -2.381923         9852.111         1.372E 03         0.           0.01128086         -0.007515         -4295.000         1.449E 03         0.           0.00147599         0.009714         1447.442         3.743E 02         1.076E 06           -0.00023441         0.070133         -747.694         1.766E 02         3.500E 06           -0.00037694         2.533002         -6.768         4.503E 02         0.           0.00492505         -6.131128         -240.751         1.787E 02         4.760E 06           0.00807161         0.024914         -965.306         4.503E 02         0.           -0.01921673 | GENERALIZED DISPLACEMENT         GENERALIZED VELOCITY         GENERALIZED FORCE         WEIGHT POUNDS         STIFFNESS LB/IN         DAMPING VALUE (LB-SEC)/IN           0.00692529         -8.688663         -2516.508         1.372E 03         0.         0.           -0.00036806         3.521061         -47.109         1.449E 03         0.         0.           0.00008765         0.410984         124.969         3.743E 02         1.076E 06         0.           0.00002679         -0.069238         516.864         2.457E 03         1.980E 07         0.           -0.0003465         -0.070835         -46.509         1.766E 02         3.500E 06         0.           -0.01128086         -0.007515         -4295.000         1.449E 03         0.         0.           0.00147599         0.009714         1447.442         3.743E 02         1.076E 06         0.           -0.00023441         0.070133         -747.694         1.766E 02         3.500E 06         0.           -0.00037694         2.533002         -6.768         4.503E 02         0.         0.           -0.0002301         -0.000182         -103.573         1.787E 02         4.760E 06         9.891E 01           -0.001921673         -1.699894         907.795 <td>GENERALIZED         GENERALIZED OLITY         GENERALIZED FORCE         WEIGHT POUNDS         STIFFNESS LB/IN         DAMPING VALUE (LB-SEC)/IN         GENERALIZED ACCELERATION           0.00692529         -8.688663         -2516.508         1.372E 03         0.         0.         -708.6342           -0.00036806         3.521061         -47.109         1.449E 03         0.         0.         -12.5644           0.00008765         0.410984         124.969         3.743E 02         1.076E 06         0.         31.6487           0.00002679         -0.069238         516.864         2.457E 03         1.980E 07         0.         -2.1454           -0.00729078         -2.381923         9852.111         1.372E 03         0.         0.         2774.2979           0.01128086         -0.007515         -4295.000         1.449E 03         0.         0.         -1145.5191           0.00147599         0.009714         1447.442         3.743E 02         1.076E 06         0.         -145.2921           -0.00023441         0.070133         -747.694         1.766E 02         3.500E 06         0.         159.1817           -0.0002301         -0.000182         -103.573         1.784E 02         0.         0.         -521.4445</td> | GENERALIZED         GENERALIZED OLITY         GENERALIZED FORCE         WEIGHT POUNDS         STIFFNESS LB/IN         DAMPING VALUE (LB-SEC)/IN         GENERALIZED ACCELERATION           0.00692529         -8.688663         -2516.508         1.372E 03         0.         0.         -708.6342           -0.00036806         3.521061         -47.109         1.449E 03         0.         0.         -12.5644           0.00008765         0.410984         124.969         3.743E 02         1.076E 06         0.         31.6487           0.00002679         -0.069238         516.864         2.457E 03         1.980E 07         0.         -2.1454           -0.00729078         -2.381923         9852.111         1.372E 03         0.         0.         2774.2979           0.01128086         -0.007515         -4295.000         1.449E 03         0.         0.         -1145.5191           0.00147599         0.009714         1447.442         3.743E 02         1.076E 06         0.         -145.2921           -0.00023441         0.070133         -747.694         1.766E 02         3.500E 06         0.         159.1817           -0.0002301         -0.000182         -103.573         1.784E 02         0.         0.         -521.4445 |

TIME = 0.2500000 SECONDS

ROTOR PROPERTIES FOR INDEPENDENT ROTOR (ROTOR 1)-

SPEED= 3000. RPM
ACCELERATION= O. RPM/SEC

. The first of the contract o

ANGULAR DISPLACEMENT= 12.50001454 REVOLUTIONS

| <del></del> |                   | 0.7.07      | NACEMENTS TH   | CIVEN DIDEC | TION           |             |
|-------------|-------------------|-------------|----------------|-------------|----------------|-------------|
| POINT       | x                 | A 012)      | PLACEMENTS IN  | THETA-X     | THETA-Y        | THETA-Z     |
| NUMBER      | INCHES            | INCHES      | Z<br>INCHES    | RADIANS     | RADIANS        | RADIANS     |
| 1           | - <del>0</del> .  | -0.02557192 | 0.00464358     | 0.          | -0.00006024    | -0.00035631 |
| 2           | Ö.                | -0.02201033 | 0.00404220     | Õ.          | -0.00006025    | -0.00035633 |
| 3           | Õ.                | 0.00654277  | -0.00081002    | Ö.          | -0.00006105    | -0.00035750 |
| 4           | Õ.                | -0.03661259 | 0.00644784     | Ö.          | -0.00009014    | -0.00058006 |
| 5           | ~~ <del>0</del> . | -0.03078181 | 0.00553558     | Ö.          | -0.00008945    | -0.00056801 |
| 6           | Ö.                | 0.00961086  | -0.00121169    | Õ.          | -0.00008085    | -0.00048042 |
| 33          | 0.                | 0.01011946  | -0.00142170    | Ö.          | -0.00006107    | -0.00035752 |
| 34          | Ö.                | -0.01959914 | 0.00374459     | Ö.          | -0.00008727    | -0.00053897 |
| 35          | 0.                | 0.00040890  | 0.00037883     | 0.          | -0.00008208    | -0.00048692 |
| 36          | Ö.                | 0.01419841  | -0.00199962    | Ö.          | -0.00008081    | -0.00048392 |
| 37          | o.                | -0.00775964 | 0.00163375     | 0.          | -0.00006065    | -0.00035691 |
| 38          | Ö.                | -0.00921793 | 0.00202322     | Ö.          | -0.00008451    | -0.00050891 |
| 39          | <del>0</del> .    | 0.          | 0.             | 0.          | 0.             | 0.000000    |
| 40          | Ö.                | Ö.          | 0.             | Ö.          | Ö.             | Ö.          |
|             | -                 | _           | _              |             |                |             |
|             |                   |             | ELOCITIES IN ( |             |                |             |
| POINT       | X                 | Y           | Z              | THETA-X     | THETA-Y        | THETA-Z     |
| NUMBER      | IN/SEC            | IN/SEC      | IN/SEC         | RAD/SEC     | RAD/SEC        | RAD/SEC     |
| 1           | 0.                | -1.569837   | -8.009648      | 0           | 0.111385       | -0.019882   |
| 2           | 0.                | -1.371367   | -6.896129      | 0.          | 0.111389       | -0.019886   |
| 3           | Ο.                | 0.230613    | 2.025686       | Ο.          | 0.111656       | -0.020163   |
| 4           | ο. ΄              | -2.160661   | -11.500158     | 0.          | 0.182766       | -0.028637   |
| 5           | 0.                | -1.853177   | -9.654720      | 0.          | 0.178982       | -0.029028   |
| 6           | ō.                | 0.344183    | 2.970336       | 0.          | 0.148627       | -0.026855   |
| 33          | <b>0</b> .        | 0.432637    | 3.142621       | Q.          | 0.111660       | -0.020168   |
| 34          | 0.                | -1.241126   | -6.120173      | ٥.          | 0.169400       | -0.028751   |
| 35          | <u> </u>          | -0.147072   | 0.133914       | <u>0.</u>   | 0.151217       | -0.026578   |
| 36          | 0.                | 0.593904    | 4.380524       | 0.          | 0.149671       | -0.027627   |
| 37          | <b>O</b> .        | -0.576464   | -2.441073      | 0.          | 0.111523       | -0.020025   |
| 38          | 0.                | -0.667301   | -2.859568      | 0.          | 0.159056       | -0.027565   |
| 39          | <u> </u>          | <u> </u>    | <u>0.</u>      | <u>0.</u>   | <u> </u>       | <u> </u>    |
| 40          | 0.                | 0.          | 0.             | 0.          | 0.             | 0.          |
|             |                   |             |                |             | EM MODE SHAPES |             |
| POINT       | X                 | Υ           | Z              | THETA-X     | THETA-Y        | THETA-Z     |
| NUMBER      | POUNDS            | POUNDS      | POUNDS         | IN-LB       | IN-LB          | IN-LB       |
| 1           | Ο.                | Ο.          | Ο.             | ο.          | Ο.             | Ο.          |
| 2           | 0.                | -18.802     | 12.840         | 0.          | -149.073       | -218.292    |
| 3           | 0.                | 18.802      | -12.840        | 0.          | -149.073       | -218.292    |
| 4           | Ο.                | Ο.          | 0.             | 0.          | 0.             | 0.          |
| 5           | Ο.                | 326.207     | -54.787        | 0.          | 1720.214       | 26878.249   |
| 6           | 0.                | -936.554    | 80.294         | 0.          | 491.465        | -2523.240   |
| 33          | 0.                | 0.          | Ö.             | 0.          | 0.             | 0.          |
| 34          | 0.                | 1507.079    | -200.567       | 0.          | 2704.374       | 32127.619   |
| 35          | 0.                | -866.668    | 69.137         | Ο.          | 1999.420       | 15585.857   |

| ſ                           |                                  |                                  |                      |                           |                            | (                         |                          |                                   | •                                |                            | (                            |
|-----------------------------|----------------------------------|----------------------------------|----------------------|---------------------------|----------------------------|---------------------------|--------------------------|-----------------------------------|----------------------------------|----------------------------|------------------------------|
| 36<br>37<br>38              | 0.<br>0.<br>0.                   | ŧ                                | 0.<br>8.383<br>5.659 | 0.<br>-5.725<br>29.970    |                            |                           | 0.<br>903.096<br>855.103 | O.<br>- 1322 . 425<br>28523 . 552 |                                  |                            |                              |
| THE FOL                     | LOWING VALU                      | IES ARE FOR                      | R THE TYPE           | 3 PHYSI                   | CAL CONNECTION OR O        | NG ELEME                  |                          |                                   |                                  |                            |                              |
| ELEMENT<br>NUMBER           | RELATIVE<br>DISPLACEME<br>INCHES | NT BAND                          |                      | I-END<br>POINT<br>NUMBER  | POINT                      | FORC<br>I E<br>POUN       | ND                       | IRECTION<br>J END<br>POUNDS       | FORCE IN Z DI<br>I END<br>POUNDS | RECTION<br>J END<br>POUNDS | FORCE<br>MAGNITUDE<br>POUNDS |
| 5                           | 0.0112                           | 0.0100                           | -0.0012              | 4                         | 1                          | 1171.5                    | 79                       | -1171.579                         | -191.459                         | 191.459                    | 1187.120                     |
|                             |                                  |                                  |                      |                           | G ELEMENTS (I              |                           |                          |                                   |                                  |                            |                              |
|                             |                                  |                                  |                      |                           |                            | FORCE IN                  | GIVEN D                  |                                   |                                  |                            |                              |
| ELEMENT<br>NUMBER           | END                              | POINT<br>NUMBER                  | X<br>POU             | UNDS                      | Y<br>POUNDS                | <u>,</u>                  | Z<br>POUNDS              | THETA-Y<br>IN-LB                  | THETA-Z<br>IN-LB                 |                            |                              |
| 1                           | I                                | 2                                | 0.                   |                           | 11125.619                  |                           | 1415.388                 |                                   | o.                               |                            |                              |
| 1 2                         | J<br>I                           | 39<br>3                          | 0.<br>0.             |                           | -11125.619<br>-3291.642    |                           | 1415.388                 |                                   | 0.<br>0.                         |                            |                              |
| 2                           | J                                | 40                               | <u>0.</u>            |                           | 3291.642                   |                           | -227.085                 |                                   | 0.                               |                            |                              |
| 3                           | 1                                | 5                                | 0.                   |                           | 8856.120                   |                           | 1008.778                 |                                   | 0.                               |                            |                              |
| 3<br>4                      | J<br>I                           | 2<br>6                           | 0.<br>0.             |                           | -8856.120<br>-3088.039     |                           | 1008.778<br>235.727      |                                   | 0.<br>0.                         |                            |                              |
|                             | <del></del>                      | 3                                | <u> </u>             |                           | 3088.039                   |                           | -235.727                 |                                   | <u>0.</u>                        | <del></del>                |                              |
| POINT<br>NUMBER             | ROTOR<br>NUMBER                  | POLAR MO<br>OF INEF<br>LB-IN     | RTIA                 |                           | XIS<br>IENT<br>LB          | Z-AXIS<br>MOMENT<br>IN-LB |                          |                                   |                                  |                            |                              |
| 4<br>36                     | 1                                |                                  | 4205.<br>4205.       | 4288.<br>4137.            |                            | 372.119<br>415.643        |                          |                                   |                                  |                            |                              |
| SUMMARY                     | OF UNBALA                        | NCE FORCES                       | 5                    |                           |                            | <del></del>               | <del></del> -            |                                   |                                  |                            |                              |
| BIRTH<br>TIME<br>SECOND     | POINT                            | ROTOR MA                         | AGNI TUDE            | PHASE<br>ANGLE<br>DEGREES | FORCE (LB.)<br>Y-DIRECTION |                           |                          | ,                                 |                                  |                            |                              |
| 0.                          | 4                                | 1                                | 5000.                | 0.                        | -2815.522                  | -                         | 0.071                    |                                   |                                  |                            |                              |
|                             |                                  | GENERAL 1 ZE                     |                      |                           |                            |                           |                          |                                   |                                  |                            |                              |
| GENERAL<br>COORDIN<br>NUMBE | ATE                              | FORCE D<br>TO APPLI<br>FORCES ON | IED                  |                           |                            |                           |                          |                                   |                                  |                            |                              |
| 1 2                         |                                  | 0.07                             | 71                   |                           |                            |                           |                          |                                   |                                  |                            |                              |
| 3<br>4                      |                                  | -0.00<br>-0.02                   |                      |                           |                            |                           | •                        |                                   |                                  |                            |                              |
| 5                           |                                  | 0.00                             | 07                   |                           |                            |                           |                          |                                   |                                  |                            |                              |
| 6<br>7                      |                                  | 2815.52<br>-2815.52              |                      |                           |                            |                           |                          |                                   |                                  |                            |                              |
| 8                           |                                  | -343.9                           |                      |                           |                            |                           |                          |                                   |                                  |                            |                              |
| 9                           |                                  | -773.70                          | 05                   |                           |                            |                           |                          |                                   |                                  |                            |                              |
| 10                          |                                  | 291.7                            | 16                   |                           |                            |                           |                          |                                   |                                  |                            |                              |
| 11                          |                                  | Ο.                               |                      |                           |                            |                           |                          |                                   |                                  |                            |                              |

13 14 15

Ο. 0.

| 16          | 0.            |             |             |             |             |               |                 |  |
|-------------|---------------|-------------|-------------|-------------|-------------|---------------|-----------------|--|
| GENERALIZED |               |             |             | GENERALIZED | GENERALIZED | GENERALIZED   |                 |  |
| COORDINATE  | GENERAL I ZED | GENERALIZED | GENERALIZED | WEIGHT      | STIFFNESS   | DAMPING VALUE | GENERAL I ZED   |  |
| NUMBER      | DISPLACEMENT  | VELOCITY    | FORCE       | POUNDS      | LB/IN       | (LB-SEC)/IN   | ACCELERATION    |  |
| 1           | -0.00422616   | 7.958366    | 1355.665    | 1.372E 03   | 0.          | 0.            | 381.7474        |  |
| 2           | 0.00220272    | -3.485190   | -964.582    | 1.449E 03   | 0.          | Q.            | -257.2635       |  |
| 3           | 0.00015017    | -0.528935   | 166.804     | 3.743E 02   | 1.076E 06   | 0.            | 5.3916          |  |
| 4           | -0.00000883   | 0.065590    | - 174 . 493 | 2.457E 03   | 1.980E 07   | Ο.            | 0.0608          |  |
| 5           | -0.00002934   | 0.096687    | -57.098     | 1.766E 02   | 3.500E 06   | 0.            | 99.747 <b>7</b> |  |
| 6           | 0.02546358    | 1.378709    | -8907.140   | 1.372E 03   | 0.          | 0.            | -2508.1994      |  |
| 7           | -0.01099476   | -0.771710   | 4124.138    | 1.449E 03   | 0.          | Ο.            | 1099.9483       |  |
| 8           | -0.00152237   | -0.045883   | -1487.218   | 3.743E 02   | 1.076E 06   | 0.            | 155.7435        |  |
| 9           | 0.00021134    | 0.005192    | 4059.547    | 2.457E 03   | 1.980E 07   | 0.            | - 19 . 6533     |  |
| 10          | 0.00025447    | 0.058526    | 815.480     | 1.766E 02   | 3.500E 06   | 0.            | -164.4296       |  |
| 11          | 0.00162421    | -2.437912   | -223.793    | 4.503E 02   | 0.          | 0.            | - 192 . 038 1   |  |
| 12          | -0.00303264   | 5.576134    | 126.915     | 1.784E 02   | Ο.          | 0.            | 274.8864        |  |
| 13          | -0.00001328   | 0.004399    | -62.551     | 1.787E 02   | 4.760E 06   | 9.891E O1     | 0.4475          |  |
| 14          | -0.00774567   | -0.573176   | 894.318     | 4.503E 02   | 0.          | 0.            | 767.4202        |  |
| 15          | 0.01784569    | 1.001237    | -806.902    | 1.784E 02   | Ο.          | 0.            | - 1747 . 6792   |  |
| 16          | 0.00001944    | 0.004576    | 92.130      | 1.787E O2   | 4.760E 06   | 9.891E 01     | -1.8524         |  |

ROTOR PROPERTIES FOR INDEPENDENT ROTOR (ROTOR 1)-

SPEED= 3000. RPM
ACCELERATION= 0. RPM/SEC

ANGULAR DISPLACEMENT= 15.00001776 REVOLUTIONS

|        |        | DIS         | PLACEMENTS IN | GIVEN DIREC | TION       |            |  |
|--------|--------|-------------|---------------|-------------|------------|------------|--|
| POINT  | Х      | Y           | Z             | THETA-X     | THETA-Y    | THETA-Z    |  |
| NUMBER | INCHES | INCHES      | INCHES        | RADIANS     | RADIANS    | RADIANS    |  |
| 1      | Ö.     | 0.02486154  | -0.00534319   | 0.          | 0.00008801 | 0.00034511 |  |
| 2      | Ο.     | 0.02141232  | -0.00446294   | 0.          | 0.00008801 | 0.00034513 |  |
| 3      | 0.     | -0.00625826 | 0.00257237    | Ο.          | 0.00008788 | 0.00034663 |  |
| 4      | Ο.     | 0.03573390  | -0.00744054   | 0.          | 0.00012886 | 0.00056692 |  |
| 5      | 0.     | 0.03004666  | -0.00616757   | 0.          | 0.00012758 | 0.00055433 |  |
| 6      | 0.     | -0.00920327 | 0.00374897    | 0.          | 0.00012573 | 0.00046534 |  |
| 33     | Ο.     | -0.00972668 | 0.00345095    | 0.          | 0.00008787 | 0.00034665 |  |
| 34     | 0.     | 0.01916054  | -0.00365991   | 0.          | 0.00012556 | 0.00052474 |  |
| 35     | 0.     | -0.00027704 | 0.00127204    | 0.          | 0.00012460 | 0.00047251 |  |
| 36     | 0.     | -0.01364711 | 0.00499987    | 0.          | 0.00012662 | 0.00046823 |  |
| 37     | 0.     | 0.00760992  | -0.00094243   | 0.          | 0.00008794 | 0.00034588 |  |
| 38     | 0.     | 0.00907131  | -0.00118867   | 0.          | 0.00012452 | 0.00049461 |  |
| 39     | Ö.     | 0.          | 0.            | 0.          | Ō.         | 0.         |  |
| 40     | Ο.     | 0.          | 0.            | 0.          | 0.         | 0.         |  |

|        |        | VE        |           |         |           |          |
|--------|--------|-----------|-----------|---------|-----------|----------|
| POINT  | Х      | Y         | Z         | THETA-X | THETA-Y   | THETA-Z  |
| NUMBER | IN/SEC | IN/SEC    | IN/SEC    | RAD/SEC | RAD/SEC   | RAD/SEC  |
| 1      | 0.     | 1.714370  | 7.764889  | 0.      | -0.107436 | 0.028594 |
| 2      | 0.     | 1.428434  | 6.691115  | 0.      | -0.107443 | 0.028594 |
| 3      | Ο.     | -0.859353 | -1.922986 | 0.      | -0.107909 | 0.028600 |
| 4      | 0.     | 2.375689  | 11.143891 | Ο.      | -0.176688 | 0.040666 |
| 5      | Ο.     | 1.968059  | 9.387116  | ٠٥.     | -0.172278 | 0.040644 |
| 6      | 0.     | -1.263389 | -2.823882 | 0.      | -0.144715 | 0.042179 |
| 33     | Ο.     | -1.145363 | -3.002737 | 0.      | -0.107917 | 0.028600 |
| 34     | 0.     | 1.156224  | 6.030862  | 0.      | -0.162815 | 0.040563 |
| 35     | Ο.     | -0.449564 | -0.017487 | 0.      | -0.147340 | 0.041072 |
| 36     | 0.     | -1.680513 | -4.217023 | 0.      | -0.145026 | 0.042978 |
| 37 .   | 0.     | 0.284667  | 2.394302  | 0.      | -0.107676 | 0.028597 |
| 38     | 0.     | 0.351976  | 2.905867  | 0.      | -0.153853 | 0.040604 |
| 39     | 0.     | 0.        | 0.        | 0.      | 0.        | 0.       |
| 40     | 0.     | 0.        | 0.        | 0.      | ō.        | 0.       |

|        |        | FORCES CO    | NTRIBUTED BY | THE SUBSYSTE | M MODE SHAPES |            |
|--------|--------|--------------|--------------|--------------|---------------|------------|
| POINT  | X      | Υ            | Z            | THETA-X      | THETA-Y       | THETA-Z    |
| NUMBER | POUNDS | POUNDS       | POUNDS       | IN-LB        | IN-LB         | IN-LB      |
| 1      | Ο.     | Ο.           | 0.           | Ο.           | 0.            | 0.         |
| 2      | 0.     | 23.911       | 2.073        | Ο.           | -24.071       | 277.610    |
| 3      | 0.     | -23.911      | -2.073       | 0.           | -24.071       | 277.610    |
| 4      | 0.     | 0.           | 0.           | 0.           | 0.            | 0.         |
| 5      | 0.     | -289.025     | -39.589      | 0.           | -2477.952     | -27794.224 |
| 6      | 0.     | 896.396      | -45.704      | 0.           | 1630.753      | 1463.907   |
| 33     | 0.     | Ö.           | 0.           | 0.           | 0.            | 0.         |
| 34     | 0.     | - 1275 . 207 | -71.258      | 0.           | -1628.371     | -32368.677 |
| 35     | 0.     | 832.686      | -53.020      | 0.           | 654.873       | -15913.777 |

| 36<br>37                         | 0.<br>0.        | 0.<br>-10.                               | 661 -0.924                                    | _                        | 0.<br>-145.825                  | O.<br>1681.780          |                                  |                       |                                                              |
|----------------------------------|-----------------|------------------------------------------|-----------------------------------------------|--------------------------|---------------------------------|-------------------------|----------------------------------|-----------------------|--------------------------------------------------------------|
|                                  |                 |                                          | 952 -59.175 THE TYPE 3 PHYSI MENT EXERTS ON T | CAL CONNECTI             |                                 | -28505.856              |                                  |                       |                                                              |
|                                  | RELATIVE        | DEAD                                     | I-END<br>LEARANCE POINT                       | JEND.<br>POINT           | FORCE IN Y C<br>I END<br>POUNDS | IRECTION  J END  POUNDS | FORCE IN 2 DI<br>I END<br>POUNDS | RECTION  J END POUNDS | FORCE<br>MAGNITUDE<br>POUNDS                                 |
| 5                                | 0.0111          | 0.0100                                   | -0.0011 4                                     | 1                        | - 1053 . 380                    | 1053.380                | 203.204                          | -203.204              | 1072.801                                                     |
|                                  |                 | E TYPE 5 PH                              | YSICAL CONNECTING ON THE ENGINE OF            |                          |                                 |                         |                                  |                       |                                                              |
|                                  |                 |                                          |                                               |                          | FORCE IN GIVEN D                | IRECTION                |                                  |                       |                                                              |
| ELEMENT<br>NUMBER                | END             | POINT<br>NUMBER                          | X<br>POUNDS                                   | Y<br>POUNDS              | Z                               | THETA-Y<br>IN-LB        | THETA-Z<br>IN-LB                 |                       |                                                              |
| 1                                | I               | 2<br>39                                  | 0.<br>0.                                      | - 10831.625<br>10831.625 | 1643.765<br>-1643.765           |                         | 0.<br>0.                         |                       |                                                              |
| 2                                | İ               | 3                                        | 0                                             | 3204.609                 | -1117.283                       | 0.                      | 0.                               |                       |                                                              |
| 2<br>3                           | J               | 40<br>5                                  | 0.<br>0.                                      | -3204.609<br>-8729.129   | 1117.283<br>1231.021            |                         | 0.<br>0.                         |                       |                                                              |
| 3                                | j               | 2                                        | Ŏ.                                            | 8729.129                 |                                 |                         | Ŏ.                               |                       |                                                              |
| 4                                | <u></u>         | <u>6</u><br>3                            | 0.<br>0.                                      | 3015.988<br>-3015.988    | - 1018.337<br>1018.337          |                         | 0.<br>0.                         | <del> </del>          |                                                              |
| THE GYROS                        | COPIC FOR       |                                          | ON THE ROTOR(S)                               |                          |                                 | -                       |                                  |                       |                                                              |
|                                  | ROTOR<br>NUMBER | POLAR MOM<br>OF INERT<br>LB-IN++         | IA MOM                                        | AXIS<br>MENT<br>·LB      | Z-AXIS<br>MOMENT<br>IN-LB       |                         |                                  |                       |                                                              |
| 4<br>36                          | 1               | 1842<br>1842                             |                                               |                          | 461.887<br>719.919              |                         |                                  |                       |                                                              |
| SUMMARY O                        | F UNBALA        | NCE FORCES-                              |                                               |                          |                                 |                         |                                  |                       |                                                              |
| BIRTH<br>TIME<br>SECONDS         |                 |                                          | PHASE<br>NITUDE ANGLE<br>M-IN DEGREES         |                          | FORCE (LB.) Z-DIRECTION         |                         |                                  |                       |                                                              |
| Ο.                               | 4               | 1                                        | 5000. 0.                                      | 2815.522                 | 0.089                           |                         |                                  |                       |                                                              |
|                                  |                 | GENERAL I ZED                            |                                               |                          |                                 |                         |                                  |                       |                                                              |
| GENERALIZ<br>COORDINAT<br>NUMBER |                 | FORCE DU<br>TO APPLIE<br>FORCES ONL      | .D                                            |                          |                                 |                         |                                  |                       |                                                              |
| 1 2 3                            |                 | -0.089<br>0.089<br>0.011                 |                                               |                          |                                 |                         |                                  |                       | amende alle 911 et 19 viloritad des pay per des debut passet |
| 5<br>6                           |                 | 0.025<br>-0.009<br>-2815.522<br>2815.522 | :                                             |                          |                                 |                         |                                  |                       |                                                              |
| 8<br>                            |                 | 343.916                                  | <u> </u>                                      |                          |                                 |                         |                                  |                       |                                                              |
| 9<br>10<br>11                    |                 | 773.705<br>-291.716<br>0.                |                                               |                          |                                 |                         |                                  |                       |                                                              |

| 12 | 0. |
|----|----|
| 13 | 0. |
| 14 | 0. |
| 15 | 0. |
| 16 | ^  |

| GENERALIZED | •            |             |               | GENERALIZED | GENERALIZED | GENERALIZED   |               |
|-------------|--------------|-------------|---------------|-------------|-------------|---------------|---------------|
|             | 0505041 1750 |             | SELIEBLI TRES |             |             |               | 05115011 1350 |
| COORDINATE  | GENERALIZED  | GENERALIZED | GENERALIZED   | WEIGHT      | STIFFNESS   | DAMPING VALUE | GENERALIZED   |
| NUMBER      | DISPLACEMENT | VELOCITY    | FORCE         | POUNDS      | LB/IN       | (LB-SEC)/IN   | ACCELERATION  |
| 1           |              |             |               |             |             |               |               |
| 1           | 0.00622832   | -7.698082   | -2253.322     | 1.372E 03   | 0.          | 0.            | -634.5224     |
| 2           | -0.00121685  | 3.403180    | 415.977       | 1.449E 03   | 0.          | 0.            | 110.9452      |
| 3           | -0.00003087  | 0.470751    | -40.950       | 3.743E 02   | 1.076E 06   | 0.            | -7.9858       |
| 4           | 0.00002953   | -0.064140   | 566.725       | 2.457E 03   | 1.980E 07   | ٥.            | -2.8370       |
| 5           | -0.00000269  | -0.026562   | -7.096        | 1.766E 02   | 3.500E 06   | 0.            | 5.0933        |
| 6           | -0.02474829  | -2.031166   | 8597.588      | 1.372E 03   | 0.          | 0.            | 2421.0314     |
| 7           | 0.01083237   | 0.348386    | -3951.000     | 1.449E 03   | O.          | 0.            | - 1053 . 7708 |
| 8           | 0.00154083   | -0.022973   | 1495.205      | 3.743E 02   | 1.076E 06   | 0.            | -168.0105     |
| 9           | -0.00021031  | -0.011151   | -4035.337     | 2.457E 03   | 1.980E 07   | <u> </u>      | 20.2520       |
| 10          | -0.00022022  | -0.019383   | -818.477      | 1.766E 02   | 3.500E 06   | 0.            | - 104 . 3555  |
| 11          | -0.00094397  | 2.388772    | 110.595       | 4.503E 02   | Ο.          | Ο.            | 94.9023       |
| 12          | 0.00439707   | -5.383813   | -206.147      | 1.784E O2   | 0.          | Ο.            | -446.4968     |
| 13          | -0.00000214  | -0.007696   | -11.253       | 1.787E 02   | 4.760E 06   | 9.891E 01     | -0.6230       |
| 14          | 0.00759215   | 0.284599    | -860.495      | 4.503E 02   | Ö.          | 0.            | -738.3959     |
| 15          | -0.01729411  | -1.429867   | 779.514       | 1.784E 02   | 0.          | Ο.            | 1688.3584     |
| 16          | -0.00002472  | -0.000095   | -117.337      | 1.787E O2   | 4.760E 06   | 9.891E 01     | 0.7615        |
| 19          |              |             |               |             |             |               |               |

SPEED SEEMENT NUMBER= 1

ROTOR PROPERTIES FOR INDEPENDENT ROTOR (ROTOR 1)-

SPEED= 3000. RPM

ACCELERATION= 0. RPM/SEC

ANGULAR LISPLACEMENT= 17.50002074 REVOLUTIONS

|        |                                  | DISI        | PLACEMENTS IN | GIVEN DIREC          | TION           |             |
|--------|----------------------------------|-------------|---------------|----------------------|----------------|-------------|
| POINT  | X                                | Υ Σ13.      | Z             | THETA-X              | THETA-Y        | THETA-Z     |
| NUMBER | INCHES                           | INCHES      | INCHES        | RADIANS              | RADIANS        | RADIANS     |
| 1      | <u>5.</u>                        | -0.02588359 | 0.00504401    | 0.                   | -0.00008165    | -0.00036335 |
| 2      | <b>う</b> .                       | -0.02225120 | 0.00422724    | 0.                   | -0.00008164    | -0.00036337 |
| 3      | າ.                               | 0.00685484  | -0.00229398   | 0.                   | -0.00008139    | -0.00036428 |
| 4      | ე.                               | -0.03696257 | 0.00696776    | 0.                   | -0.00011831    | -0.00058882 |
| . 5    | う.                               | -0.03105714 | 0.00580273    | 0.                   | -0.00011711    | -0.00057645 |
| 6      | o.                               | 0.01005826  | -0.00333814   | 0.                   | -0.00011598    | -0.00049084 |
| 33     | <b>う</b> .                       | 0.01049896  | -0.00310752   | 0.                   | -0.00008139    | -0.00036430 |
| 34     | ٥.                               | -0.01972735 | 0.00350565    | 0.                   | -0.00011540    | -0.00054742 |
| 35     | <u>ن</u>                         | 0.00063819  | -0.00104252   | 0.                   | -0.00011502    | -0.00049687 |
| 36     | ó.                               | 0.01475840  | -0.00449619   | 0.                   | -0.00011661    | -0.00049434 |
| 37     | ă.                               | -0.00771828 | 0.00096108    | Ö.                   | -0.00008152    | -0.00036383 |
| 38     | 5.                               | -0.00918230 | 0.00030100    | 0.                   | -0.00011473    | -0.00051803 |
| 39     | " <del>Ś.</del>                  | 0.          | 0.            | 0.                   | 0.             | 0.          |
| 40     | 3.                               | 0.<br>0.    | 0.<br>0.      | 0.<br>0.             | 0.<br>0.       | 0.          |
| •      | ٠.                               |             |               |                      |                | <u> </u>    |
| POINT  |                                  |             | ELOCITIES IN  | GIVEN DIRECT THETA-X | THETA-Y        | THETA-Z     |
|        | X X                              | Y<br>1N/650 | Z<br>TN/SEC   |                      |                |             |
| NUMBER | IN/SEC                           | IN/SEC      | IN/SEC        | RAD/SEC              | RAD/SEC        | RAD/SEC     |
| 1      | <u>o.</u>                        | -1.584295   | -8.123706     | 0                    | 0.113962       | -0.025912   |
| 2      | Ō.                               | -1.324966   | -6.984489     | 0.                   | 0.113967       | -0.025910   |
| 3      | Ο.                               | 0.741222    | 2.145690      | 0.                   | 0.114288       | -0.025745   |
| 4      | Ο.                               | -2.189696   | -11.601606    | Ο.                   | 0.184148       | -0.038727   |
| 5      | Ο.                               | -1.817932   | -9.748956     | 0                    | 0.180531       | -0.037852   |
| 6      | ō.                               | 1.075170    | 3.151010      | 0.                   | 0.154176       | -0.035903   |
| 33     | 0.                               | 0.998440    | 3.289017      | Q.                   | 0.114292       | -0.025742   |
| 34     | 0.                               | -1.094759   | -6.189541     | Ò.                   | 0.171704       | -0.036725   |
| 35     | Ö.                               | 0.344830    | 0.200908      | Ö.                   | 0.155879       | -0.036197   |
| 36     | ō                                | 1.438521    | 4.624574      | 0.                   | 0.155476       | -0.035604   |
| 37     | Ö.                               | -0.288257   | -2.426440     | Ö.                   | 0.114127       | -0.025827   |
| 38     | Ö.                               | -0.379043   | -2.877580     | Ö.                   | 0.162515       | -0.036312   |
| 39     | 0.<br>0.                         | 0.375043    | 0.            | 0.<br>0.             | 0.102313       | 0.030372    |
| 40     | · · · <del>0</del> · · · · · · · | <u></u>     | 0.            | <u>0.</u>            | 0.             | 0.          |
| . =    | <b>-</b> .                       |             |               |                      |                |             |
| DOTALT | u                                |             |               |                      | EM MODE SHAPES |             |
| POINT  | . <u>X</u>                       | <u> </u>    | <u>Z</u>      | THETA-X              | THETA-Y        | THETA-Z     |
| NUMBER | POUNDS                           | POUNDS      | POUNDS        | IN-LB                | IN-LB          | IN-LB       |
| 1      | ο.                               | Ο.          | ٥.            | Ο.                   | 0.             | 0.          |
| 2      | Ö.                               | -14.614     | -4.030        | Ö.                   | 46.793         | - 169 . 669 |
| 3      | 0.                               | 14.614      | 4.030         | <u> </u>             | 46.793         | - 169.669   |
| 4      | Ŏ.                               | 0.          | 0.            | Ö.                   | 0.             | 0.          |
| 5      | o.                               | 281.308     | 50.279        | Õ.                   | 2257.960       | 27300.832   |
| 6      | 0.                               | -904.161    | 21.904        | 0.                   | -1219.185      | -2703.071   |
| 33     | <u> </u>                         | 0.          | 0.            | 0.                   | 0.             | 0.          |
| 34     | <b>0</b> .                       | 1323.651    | 143.675       | Ö.                   | 1230.356       | 31703.978   |
| 35     | 0.                               | -842.655    | 31.119        | 0.                   | -697.810       | 14838.167   |
|        | υ.                               | -042.033    | 31.119        | υ.                   | -057.010       | 14030.10/   |

| 37<br>38                                                                    | 0.<br>0.                                    |                                                                                                                       | 6.516<br>36.916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.797<br>46.849                               | 0.<br>0.                                           | 283.476<br>149.768              | - 1027 . 868<br>27642 . 124 |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|-----------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------|---------------------------------|-----------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|                                                                             |                                             |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | CAL CONNECTIN<br>BE ROTOR OR C                     |                                 |                             |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| ELEMENT<br>NUMBER                                                           | RELATIVE<br>DISPLACEME<br>INCHES            | NT BAND                                                                                                               | CLEARANCE<br>INCHES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I-END<br>POINT<br>NUMBER N                    | POINT                                              | FORCE IN Y D<br>I END<br>POUNDS | J END<br>POUNDS             | FORCE IN 2 DIF<br>I END<br>POUNDS | RECTION  J END  POUNDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FORCE<br>MAGNITU<br>POUND |
| 5                                                                           | 0.0112                                      | 0.0100                                                                                                                | -0.0012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                             | 1                                                  | 1226.405                        | - 1226 . 405                | -212.953                          | 212.953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1244.7                    |
|                                                                             |                                             |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | ELEMENTS (U                                        | INCOUPLED POINT<br>GROUND ARE-  |                             |                                   | the requirement of the state of |                           |
|                                                                             |                                             |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                    | ORCE IN GIVEN D                 |                             | •                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| ELEMENT<br>NUMBER                                                           | END                                         | POINT<br>NUMBER                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X<br>JUNDS                                    | Y<br>POUNDS                                        | Z<br>POUNDS                     | THETA-Y<br>IN-LB            | THETA-Z<br>In-lb                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                                                                             |                                             |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                    |                                 |                             |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 1                                                                           | I<br>J                                      | 2                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ).                                            | 11241.978<br>-11241.978                            | - 1500 . 143<br>1500 . 143      |                             | 0.<br>0.                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 1 2                                                                         | Ĭ                                           | 39<br>3                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ).<br>).                                      | -11241.978<br>-3492.524                            | 958.528                         |                             | 0.<br>0.                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                                                                             | J                                           | 40                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ).                                            | 3492.524                                           | -958.528                        |                             | 0.                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 3                                                                           | 1                                           | 5                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ).                                            | 8892.535                                           | -1089.867                       |                             | 0.                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 3                                                                           | Ĵ                                           | 2                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                             | -8892.535                                          | 1089.867                        |                             | 0.                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| <del>4</del>                                                                | J                                           | <u>6</u>                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ).<br>).                                      | -3262.083<br>3262.083                              | 867.553<br>-867.553             |                             | <u> </u>                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| POINT<br>NUMBER                                                             | ROTOR                                       | OF INE                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MOME<br>IN-L                                  |                                                    | MOMENT<br>IN-LB                 |                             |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                                                                             | NUMBER                                      | LB-IN                                                                                                                 | · · •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               | · <b></b>                                          | IM-FD                           |                             |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 4<br>36                                                                     | NUMBER<br>1<br>1                            | 18                                                                                                                    | 14205.<br>14205.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5799.9<br>5332.2                              | 31 275                                             | 579.121<br>885.045              |                             |                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                         |
| 36                                                                          |                                             | 18<br>18                                                                                                              | 14205.<br>14205.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5799.9                                        | 31 275                                             | 579.121                         |                             |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 36<br>SUMMARY<br>BIRTH<br>TIME                                              | 1<br>1<br>OF UNBALA                         | 18<br>18<br>NCE FORCE<br>ROTOR M                                                                                      | 14205.<br>14205.<br>S-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5799.9<br>5332.2<br>PHASE<br>ANGLE            | 91 275<br>54 232<br>                               | 579.121                         |                             |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 36<br>SUMMARY<br>BIRTH<br>TIME                                              | 1<br>1<br>OF UNBALA<br>POINT                | 18<br>18<br>NCE FORCE<br>ROTOR M                                                                                      | 14205.<br>14205.<br>S-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5799.9<br>5332.2<br>PHASE<br>ANGLE            | 91 275<br>54 232<br>                               | FORCE (LB.)<br>Z-DIRECTION      |                             |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 36<br>SUMMARY<br>BIRTH<br>TIME<br>SECONDS                                   | 1<br>1<br>OF UNBALA<br>POINT<br>NUMBER<br>4 | 18 NCE FORCE ROTOR M NUMBER  1 GENERALIZ                                                                              | 14205.<br>14205.<br>15-<br>14301TUDE<br>GM-IN<br>5000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5799.9<br>5332.2<br>PHASE<br>ANGLE<br>DEGREES | 91 275<br>54 232<br><br>FORCE (LB.)<br>Y-DIRECTION | FORCE (LB.)<br>Z-DIRECTION      |                             |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 36<br>SUMMARY<br>BIRTH<br>TIME<br>SECONDS                                   | OF UNBALA POINT NUMBER 4 ZED TE             | 18<br>18<br>NCE FORCE<br>ROTOR M<br>NUMBER                                                                            | 14205.<br>14205.<br>15-<br>14GNITUDE<br>GM-IN<br>5000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5799.9<br>5332.2<br>PHASE<br>ANGLE<br>DEGREES | 91 275<br>54 232<br><br>FORCE (LB.)<br>Y-DIRECTION | FORCE (LB.)<br>Z-DIRECTION      |                             |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 36 SUMMARY BIRTH TIME SECONDS O. GENERALI COORDINA NUMBER                   | OF UNBALA POINT NUMBER 4 ZED TE             | NCE FORCE  ROTOR M NUMBER  1  GENERALIZ  FORCE  TO APPL FORCES 0                                                      | 14205.<br>14205.<br>15-<br>14205.<br>15-<br>14205.<br>14205.<br>14205.<br>14205.<br>14205.<br>14205.<br>14205.<br>14205.<br>14205.<br>14205.<br>14205.<br>14205.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5799.9<br>5332.2<br>PHASE<br>ANGLE<br>DEGREES | 91 275<br>54 232<br><br>FORCE (LB.)<br>Y-DIRECTION | FORCE (LB.)<br>Z-DIRECTION      |                             |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 36 SUMMARY BIRTH TIME SECONDS O. GENERALI COORDINA NUMBER                   | OF UNBALA POINT NUMBER 4 ZED TE             | NCE FORCE  ROTOR M NUMBER  1  GENERALIZ  FORCE TO APPL FORCES O                                                       | 14205.<br>4205.<br>S-<br>AGNITUDE<br>GM-IN<br>5000.<br>ED<br>DUE<br>IED<br>INLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5799.9<br>5332.2<br>PHASE<br>ANGLE<br>DEGREES | 91 275<br>54 232<br><br>FORCE (LB.)<br>Y-DIRECTION | FORCE (LB.)<br>Z-DIRECTION      |                             |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 36 SUMMARY BIRTH TIME SECONDS O. GENERALI COORDINA NUMBER 1 2 3 4 5         | OF UNBALA POINT NUMBER 4 ZED TE             | ROTOR MUMBER  1 GENERALIZ FORCE TO APPL FORCES O  0.1 -0.0 -0.0 0.0                                                   | 14205.<br>14205.<br>15-<br>15-<br>16 GM-IN<br>5000.<br>16 DUE<br>16 DUE<br>16 DUE<br>17 OT<br>17 OT<br>18 DUE<br>19 DUE<br>19 DUE<br>19 DUE<br>10 DUE<br>11 DUE<br>10 DUE<br>11 DUE<br>11 DUE<br>11 DUE<br>12 DUE<br>13 DUE<br>14 DUE<br>16 DUE<br>17 DUE<br>18 DU | 5799.9<br>5332.2<br>PHASE<br>ANGLE<br>DEGREES | 91 275<br>54 232<br><br>FORCE (LB.)<br>Y-DIRECTION | FORCE (LB.)<br>Z-DIRECTION      |                             |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 36 SUMMARY BIRTH TIME SECONDS O. GENERALI COORDINA NUMBER 1 2 3 4 5 6       | OF UNBALA POINT NUMBER 4 ZED TE             | ROTOR MUMBER  1 GENERALIZ FORCE TO APPL FORCES O  0.1 -0.0 -0.0 2815.5                                                | 14205.<br>14205.<br>15-<br>15-<br>15-<br>15-<br>15-<br>15-<br>15-<br>15-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5799.9<br>5332.2<br>PHASE<br>ANGLE<br>DEGREES | 91 275<br>54 232<br><br>FORCE (LB.)<br>Y-DIRECTION | FORCE (LB.)<br>Z-DIRECTION      |                             |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 36 SUMMARY BIRTH TIME SECONDS O.  GENERALI COORDINA NUMBER 1 2 3 4 5 6 7    | OF UNBALA POINT NUMBER 4 ZED TE             | ROTOR MUMBER  1 GENERALIZ FORCE TO APPL FORCES O O.1 -0.1 -0.0 -0.0 2815.5 -2815.5                                    | 14205.<br>14205.<br>15-<br>15-<br>15-<br>15-<br>15-<br>15-<br>15-<br>15-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5799.9<br>5332.2<br>PHASE<br>ANGLE<br>DEGREES | 91 275<br>54 232<br>FORCE (LB.)<br>Y-DIRECTION     | FORCE (LB.)<br>Z-DIRECTION      |                             |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 36 SUMMARY BIRTH TIME SECONDS O. GENERALI COORDINA NUMBER 1 2 3 4 5 6 7 8 9 | OF UNBALA POINT NUMBER 4 ZED TE             | 18 18 NCE FORCE  ROTOR M NUMBER  1 GENERAL I Z FORCE TO APPL FORCES 0 0.1 -0.1 -0.0 -0.0 2815.5 -2815.5 -343.9 -773.7 | 14205.<br>4205.<br>S-<br>AGNITUDE<br>GM-IN<br>5000.<br>SED<br>DUE<br>IED<br>INLY<br>07<br>07<br>07<br>013<br>029<br>011<br>622<br>116<br>05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5799.9<br>5332.2<br>PHASE<br>ANGLE<br>DEGREES | 91 275<br>54 232<br>FORCE (LB.)<br>Y-DIRECTION     | FORCE (LB.)<br>Z-DIRECTION      |                             |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 36 SUMMARY BIRTH TIME SECONDS O. GENERALI COORDINA NUMBER 1 2 3 4 5 6 7 8 9 | OF UNBALA POINT NUMBER 4 ZED TE             | 18 18 NCE FORCE  ROTOR M NUMBER  1 GENERAL I Z FORCE TO APPL FORCES 0 0.1 -0.1 -0.0 -0.0 2815.5 -2815.5 -343.9 -773.7 | 14205.<br>4205.<br>S-<br>AGNITUDE<br>GM-IN<br>5000.<br>SED<br>DUE<br>IED<br>INLY<br>07<br>07<br>07<br>013<br>029<br>011<br>622<br>116<br>05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5799.9<br>5332.2<br>PHASE<br>ANGLE<br>DEGREES | 91 275<br>54 232<br>FORCE (LB.)<br>Y-DIRECTION     | FORCE (LB.)<br>Z-DIRECTION      |                             |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| BIRTH TIME SECONDS O.  GENERALI COORDINA NUMBER 1 2 3 4 5 6 7 8             | OF UNBALA POINT NUMBER 4 ZED TE             | 18 18 NCE FORCE  ROTOR M NUMBER  1 GENERAL I Z FORCE TO APPL FORCES 0 0.1 -0.1 -0.0 -0.0 2815.5 -2815.5 -343.9        | 14205.<br>4205.<br>S-<br>AGNITUDE<br>GM-IN<br>5000.<br>SED<br>DUE<br>IED<br>INLY<br>07<br>07<br>07<br>013<br>029<br>011<br>622<br>116<br>05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5799.9<br>5332.2<br>PHASE<br>ANGLE<br>DEGREES | 91 275<br>54 232<br>FORCE (LB.)<br>Y-DIRECTION     | FORCE (LB.)<br>Z-DIRECTION      |                             |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |

0.

0. 0. 0.

| NERALIZED_ |              |             |             | GENERALIZED | GENERALIZED | GENERAL I ZED |              |  |
|------------|--------------|-------------|-------------|-------------|-------------|---------------|--------------|--|
| COORDINATE | GENERALIZED  | GENERALIZED | GENERALIZED | WEIGHT      | STIFFNESS   | DAMPING VALUE | GENERALIZED  |  |
| NUMBER     | DISPLACEMENT | VELOCITY    | FORCE       | POUNDS      | LB/IN       | (LB-SEC)/IN   | ACCELERATION |  |
| 1          | -0.00573884  | 8.131451    | 2001.640    | 1.372E 03   | 0.          | 0.            | 563.6503     |  |
| 2          | 0.00123520   | -3.423439   | -435.375    | 1.449E 03   | 0.          | 0.            | -116.1188    |  |
| 3          | 0.00001689   | -0.459588   | 13.963      | 3.743E 02   | 1.076E 06   | 0.            | -4.3517      |  |
| 4          | -0.00002499  | 0.066817    | -478.276    | 2.457E 03   | 1.980E 07   | 0.            | 2.6110       |  |
| 5          | 0.00001425   | 0.086271    | 7.925       | 1.766E 02   | 3.500E 06   | 0.            | -126.4897    |  |
| 6          | 0.02591975   | 1.816256    | -9151.860   | 1.372E 03   | 0.          | 0.            | -2577.1112   |  |
| . 7        | -0.01089690  | -0.375441   | 4041.335    | 1.449E 03   | 0.          | · O.          | 1077.8641    |  |
| 8          | -0.00148504  | -0.028073   | -1468.696   | 3.743E 02   | 1.076E 06   | Ο.            | 133.3965     |  |
| 9          | 0.00021567   | 0.007815    | 4132.696    | 2.457E 03   | . 1.980E 07 | 0.            | -21.6331     |  |
| 10         | 0.00022956   | -0.031675   | 784.307     | 1.766E 02   | 3.500E 06   | 0.            | -41.9198     |  |
| 11         | 0.00096408   | -2.422637   | - 106 . 348 | 4.503E 02   | 0.          | 0.            | -91.2577     |  |
| 12         | -0.00407576  | 5.706362    | 188.048     | 1.784E 02   | 0.          | 0.            | 407.2944     |  |
| 13         | 0.00000417   | 0.005293    | 17.637      | 1.787E 02   | 4.760E 06   | 9.891E 01     | -5.8872      |  |
| 14         | -0.00770742  | -0.290209   | 892.597     | 4.503E 02   | 0.          | 0.            | 765.9433     |  |
| 15         | 0.01819128   | 1.291367    | -837.503    | 1.784E 02   | 0.          | Ο.            | -1813.9572   |  |
| 16         | 0.00001511   | -0.002718   | 69.789      | 1.787E 02   | 4.760E 06   | 9.891E 01     | -4.0345      |  |

\*EBOX 1700 PS 14

ROTOR PROPERTIES FOR INDEPENDENT ROTOR (ROTOR 1)-

SPEED= 3000. RPM
ACCELERATION= O. RPM/SEC

ANGULAR DISPLACEMENT = 20.00002408 REVOLUTIONS

|                 |             | DIS         | PLACEMENTS IN | GIVEN DIREC        | TION               |                    |
|-----------------|-------------|-------------|---------------|--------------------|--------------------|--------------------|
| POINT<br>NUMBER | X<br>INCHES | Y<br>INCHES | Z             | THETA-X<br>RADIANS | THETA-Y<br>RADIANS | THETA-Z<br>RADIANS |
|                 |             |             |               |                    |                    |                    |
| 1               | 0.          | 0.02541246  | -0.00503269   | 0.                 | 0.00007793         | 0.00035327         |
| 2               | 0.          | 0.02188145  | -0.00425343   | 0.                 | 0.00007793         | 0.00035329         |
| 3               | 0.          | -0.00643449 | 0.00198239    | 0.                 | 0.00007796         | 0.00035461         |
| 4               | 0           | 0.03640190  | -0.00699374   | 0.                 | 0.00011467         | 0.00057624         |
| 5               | 0.          | 0.03061435  | -0.00585301   | 0.                 | 0.00011359         | 0.00056402         |
| 6               | 0.          | -0.00945753 | 0.00289451    | 0.                 | 0.00010953         | 0.00047636         |
| 33              | Ο.          | -0.00998246 | 0.00276208    | 0.                 | 0.00007796         | 0.00035463         |
| 34              | 0.          | 0.01952040  | -0.00360907   | 0.                 | 0.00011148         | 0.00053486         |
| 35              | 0.          | -0.00032740 | 0.00074312    | 0.                 | 0.00010905         | 0.00048300         |
| 36              | 0.          | -0.01400781 | 0.00397735    | 0.                 | 0.00011023         | 0.00047967         |
| 37              | <b>O</b> .  | 0.00775255  | -0.00113625   | 0.                 | 0.00007795         | 0.00035395         |
| 38              | 0.          | 0.00922351  | -0.00141531   | 0.                 | 0.00010980         | 0.00050490         |
| 39              | 0.          | 0.          | 0.            | 0.                 | 0.                 | 0.                 |
| 40              | 0.          | 0.          | 0.            | 0.                 | 0.                 | 0.                 |

|        |        | VE         | LOCITIES IN G | IVEN DIRECTI | ON        |          |
|--------|--------|------------|---------------|--------------|-----------|----------|
| POINT  | X      | γ          | Z             | THETA-X      | THETA-Y   | THETA-Z  |
| NUMBER | IN/SEC | IN/SEC     | IN/SEC        | RAD/SEC      | RAD/SEC   | RAD/SEC  |
| 1      | 0.     | 1.586089   | 7.962738      | 0.           | -0.110448 | 0.024349 |
| 2      | 0.     | 1.342701   | 6.858897      | 0.           | -0.110456 | 0.024350 |
| 3      | Ο.     | -0.608431  | -1.998010     | Ο.           | -0.110966 | 0.024428 |
| 4      | Ο.     | 2.202479   | 11.416348     | Ο.           | -0.180144 | 0.035118 |
| 5      | 0.     | 1.844659   | 9.595497      | ۵.           | -0.176662 | 0.035140 |
| 6      | 0.     | -0.888825  | -2.939413     | 0.           | -0.148619 | 0.034614 |
| 33     | Ο.     | -0.852826  | -3.108395     | Ο.           | -0.110974 | 0.024430 |
| 34     | Ο.     | 1.134515   | 6.100765      | Ο.           | -0.167682 | 0.034834 |
| 35     | 0      | -0.225318  | -0.108612     | ο.           | -0.150651 | 0.034093 |
| 36     | 0.     | -1.226124  | -4.351037     | O.           | -0.149935 | 0.035207 |
| 37     | Ο.     | 0.368861   | 2.441652      | Ο.           | -0.110711 | 0.024389 |
| 38     | 0.     | 0.443878   | 2.868068      | 0.           | -0.157921 | 0.034315 |
| 39     | 0.     | 0.         | 0.            | 0.           | 0.        | 0.       |
| 40     | 0.     | <u>0</u> . | 0.            | 0.           | 0.        | 0.       |

|        |        | FORCES CO | NTRIBUTED BY | THE SUBSYSTE | M MODE SHAPES |            |
|--------|--------|-----------|--------------|--------------|---------------|------------|
| POINT  | X ·    | Y         | 2            | THETA-X      | THETA-Y       | THETA-Z    |
| NUMBER | POUNDS | POUNDS    | POUNDS       | IN-LB        | IN-LB         | IN-LB      |
| 1      | Ο.     | 0.        | 0.           | 0.           | 0.            | 0.         |
| 2      | 0.     | 21.137    | -0.530       | 0.           | 6.152         | 245.411    |
| 3      | 0.     | -21.137   | 0.530        | 0.           | 6.152         | 245.411    |
| 4      | 0.     | 0.        | Ο.           | 0.           | 0.            | 0.         |
| 5      | 0.     | -309.821  | -4.998       | 0.           | -2237.058     | -27153.837 |
| 6      | 0.     | 919.629   | -64.930      | O.           | 1131.500      | 2221.680   |
| 33     | Ō.     | 0.        | 0.           | 0.           | 0.            | 0.         |
| 34     | 0.     | -1415.958 | 46.394       | 0.           | -2049.314     | -32103.534 |
| 35     | Ο.     | 852.587   | -65.591      | 0.           | -168.965      | -15579.815 |

| 194         | 36<br>37<br>38           | 0.<br>0.<br>0.                    | 0.<br>-9.424<br>532.036               |                                      |                       | O.<br>37.267<br>-1328.414               | 0.<br>1486.715<br>-28379.419 |                                  |                            |                              |
|-------------|--------------------------|-----------------------------------|---------------------------------------|--------------------------------------|-----------------------|-----------------------------------------|------------------------------|----------------------------------|----------------------------|------------------------------|
| 2           |                          |                                   |                                       | E TYPE 3 PHYSI<br>NT EXERTS ON T     |                       |                                         |                              |                                  |                            |                              |
|             | ELEMENT D                | RELATIVE<br>ISPLACEMENT<br>INCHES | DEAD<br>BAND CLEA<br>INCHES INC       | I-END<br>ARANCE POINT<br>CHES NUMBER | POINT                 | FORCE IN Y D<br>I END<br>POUNDS         | IRECTION<br>J END<br>POUNDS  | FORCE IN Z DI<br>I END<br>POUNDS | RECTION<br>J END<br>POUNDS | FORCE<br>MAGNITUDE<br>POUNDS |
|             | 5                        | 0.0112                            | 0.0100 -                              | 0.0012 4                             | 1                     | -1144.962                               | 1144.962                     | 204.317                          | -204.317                   | 1163.049                     |
|             |                          |                                   |                                       | ICAL CONNECTIN<br>N THE ENGINE C     |                       | INCOUPLED POINT GROUND ARE-             |                              | ·                                |                            |                              |
| 1           |                          |                                   |                                       |                                      | ,                     | ORCE IN GIVEN D                         | IRECTION                     |                                  |                            |                              |
|             | ELEMENT<br>NUMBER        |                                   | POINT<br>NUMBER                       | X<br>POUNDS                          | Y<br>POUNDS           | Z<br>Pounds                             | THETA-Y<br>IN-LB             | THETA-Z<br>IN-LB                 |                            |                              |
| -           | 1                        | 1                                 | 2                                     | Ο.                                   | -11058.660            | 1524.269                                | 0.                           | ٥.                               |                            |                              |
| 1           | 1                        | J                                 | 39                                    | <b>O</b> .                           | 11058.660             | - 1524 . 269                            | 0.                           | 0.                               |                            |                              |
| ∦           | <u>2</u>                 | <u>I</u>                          | <u>3</u><br>40                        | <u>0.</u><br>0.                      | 3270.683<br>-3270.683 | -815.704<br>815.704                     | 0.<br>0.                     | <u> </u>                         |                            |                              |
| -           | 3                        | ĭ                                 | 5                                     | 0.<br>0.                             | -8821.072             | 1118.851                                | Ö.                           | <b>0</b> .                       |                            |                              |
| - 11        | 3                        | ď                                 | 2                                     | <b>0</b> .                           | 8821.072              | -1118.851                               | 0.                           | Ö.                               |                            |                              |
| ∦           | 4                        | . <u>. 1</u>                      | <u>6</u><br>3                         | <u>0.</u><br>0.                      | 3072.299<br>-3072.299 | -746.747<br>746.747                     |                              | <u> </u>                         | <del> </del>               |                              |
|             | THE GYROS                | •                                 | _                                     | THE ROTOR(S)                         |                       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Ç.                           | ,                                |                            |                              |
|             |                          | ROTOR<br>NUMBER                   | POLAR MOMEN<br>OF INERTIA<br>LB-IN++2 |                                      | XIS<br>ENT<br>LB      | Z-AXIS<br>MOMENT<br>IN-LB               |                              |                                  |                            |                              |
|             | 4<br>36                  | 1                                 | 184205<br>184205                      |                                      |                       | 979.465<br>155.169                      |                              |                                  |                            |                              |
|             | SUMMARY O                | F UNBALANC                        | E FORCES-                             |                                      |                       |                                         |                              |                                  |                            |                              |
|             | BIRTH<br>Time<br>Seconds | POINT RO                          | DTOR MAGNI<br>JMBER GM-               |                                      |                       | FORCE (LB.)<br>Z-DIRECTION              |                              |                                  |                            |                              |
|             | Ο.                       | , <b>4</b>                        | 1 500                                 | 00.                                  | 2815.522              | 0.125                                   |                              |                                  |                            |                              |
| 1           |                          |                                   | NERALIZED                             |                                      |                       |                                         |                              |                                  |                            |                              |
|             | GENERALIZ                |                                   | FORCE DUE                             |                                      |                       |                                         | ··· <del>··</del>            |                                  |                            |                              |
|             | COORDINAT<br>NUMBER      | **                                | TO APPLIED FORCES ONLY                |                                      |                       |                                         |                              |                                  |                            |                              |
| -           | 1                        |                                   | -0.125                                |                                      |                       |                                         |                              |                                  | <del></del>                |                              |
|             | 2<br>3                   |                                   | 0.125<br>0.015                        |                                      |                       |                                         |                              |                                  |                            |                              |
| 1           | . 4                      | -                                 | 0.034                                 |                                      |                       |                                         |                              |                                  |                            |                              |
| , I         | 5                        |                                   | -0.013                                |                                      |                       |                                         |                              |                                  |                            |                              |
| 1750 P9 L64 | 6<br>7                   |                                   | -2815.522<br>2815.522                 |                                      |                       |                                         |                              |                                  |                            |                              |
| Ē           | 8                        |                                   | 343.916                               |                                      |                       |                                         |                              |                                  |                            |                              |
| XEROX       | 9<br>10<br>11            |                                   | 773.705<br>-291.716<br>0.             |                                      |                       |                                         |                              |                                  |                            |                              |
| ĮĻ          |                          |                                   |                                       |                                      |                       |                                         |                              |                                  |                            |                              |

| 12     | 0. |
|--------|----|
| 13     | 0. |
| 14     | 0. |
| <br>15 | 0. |
| 16     | 0. |
|        |    |

| GENERALIZED  |              |             |              | GENERALIZED | GENERALIZED | GENERALIZED   | •              |  |
|--------------|--------------|-------------|--------------|-------------|-------------|---------------|----------------|--|
| COORDINATE   | GENERALIZED  | GENERALIZED | GENERALIZED  | WEIGHT      | STIFFNESS   | DAMPING VALUE | GENERAL I ZED  |  |
|              |              |             |              |             |             |               |                |  |
| NUMBER       | DISPLACEMENT | VELOCITY    | FORCE        | POUNDS      | LB/IN       | (LB-SEC)/IN   | ACCELERATION   |  |
|              | 0.00549220   | -7.901605   | - 1907 . 565 | 1.372E 03   | 0.          | 0.            | -537 . 1593    |  |
| 11           |              |             |              |             |             |               |                |  |
| <u> </u>   2 | -0.00149829  | 3.462017    | 576.546      | 1.449E 03   | 0.          | Ο.            | 153.7706       |  |
| ] 3          | -0.00007063  | 0.490791    | -69.564      | 3.743E 02   | 1.076E 06   | 0.            | 6.6436         |  |
| 4            | 0.00002421   | -0.065184   | 464.576      | 2.457E 03   | 1.980E 07   | Ο.            | -2.3351        |  |
| 5            | 0.00001235   | -0.103159   | 14.256       | 1.766E 02   | 3.500E 06   | 0             | -63.3680       |  |
| 6            | -0.02526288  | -1.716432   | 8832.830     | 1.372E 03   | 0.          | Ō.            | 2487.2741      |  |
| 7            | 0.01098620   | 0.483799    | -4078.214    | 1.449E O3   | 0.          | Ο.            | - 1087 . 700 1 |  |
| 8            | 0.00152150   | 0.013084    | 1500.575     | 3.743E 02   | 1.076E 06   | 0.            | -140.9936      |  |
| 9            | -0.00021115  | -0.007754   | -4048.253    | 2.457E 03   | 1.980E 07   | 0.            | 20.8482        |  |
| 10           | -0.00024119  | -0.026837   | -808.365     | 1.766E 02   | 3.500E 06   | 0.            | 78.3281        |  |
| 11           | -0.00113585  | 2.435598    | 132.144      | 4.503E 02   | 0.          | Ο.            | 113.3940       |  |
| 12           | 0.00389739   | -5.535567   | - 175. 183   | 1.784E 02   | 0.          | 0.            | -379.4313      |  |
| 13           | 0.00000055   | -0.008426   | 1.497        | 1.787E 02   | 4.760E 06   | 9.891E 01     | -0.6004        |  |
| 14           | 0.00773685   | 0.367929    | -894.241     | 4.503E 02   | 0.          | 0.            | -767.3538      |  |
| 15           | -0.01769746  | -1.219457   | 803.816      | 1.784E 02   | Ο.          | 0.            | 1740.9946      |  |
| 16           | -0.00002186  | -0.001297   | -102.418     | 1.787E 02   | 4.760E 06   | 9.891E 01     | . 3.7633       |  |
| II.          |              |             |              |             |             |               |                |  |

TIME = 0.4500000 SECONDS

| CDEED  | CECMEN | T NUMBER= | • |
|--------|--------|-----------|---|
| \PFF1) | SEGMEN | I NUMBEK= | 1 |

ROTOR PROPERTIES FOR INDEPENDENT ROTOR (ROTOR 1)-

SPEED= 3000. RPM
ACCELERATION= O. RPM/SEC

ANGULAR DISPLACEMENT = 22.49989796 REVOLUTIONS

|                 |             |             | PLACEMENTS IN  |                    |                    |                    |                                       |       |   |
|-----------------|-------------|-------------|----------------|--------------------|--------------------|--------------------|---------------------------------------|-------|---|
| POINT<br>NUMBER | X<br>INCHES | Y<br>INCHES | Z<br>INCHES    | THETA-X<br>RADIANS | THETA-Y<br>RADIANS | THETA-Z<br>RADIANS |                                       |       |   |
| 1               | Ö.          | -0.02538712 | 0.00523581     | 0.                 | -0.00008409        | -0.00035406        |                                       |       |   |
| 2               | 0.          | -0.02184803 | 0.00439483     | 0.                 | -0.00008409        | -0.00035408        |                                       |       |   |
| 3               | 0.          | 0.00652519  | -0.00232857    | 0.                 | -0.00008400        | -0.00035526        |                                       |       |   |
| 4               | 0.          | -0.03636473 | 0.00726953     | 0.                 | -0.00012296        | -0.00057776        |                                       |       |   |
| 5               | 0.          | -0.03056947 | 0.00605131     | 0.                 | -0.00012180        | -0.00056524        |                                       |       |   |
| 6               | Ö.          | 0.00958412  | -0.00339448    | Ö.                 | -0.00011949        | -0.00047720        |                                       |       |   |
| 33              | O.          | 0.01007941  | -0.00316844    | 0.                 | -0.00008400        | -0.00035527        |                                       |       |   |
| 34              | 0.          | -0.01946490 | 0.00365181     | 0.                 | -0.00011982        | -0.00053583        |                                       |       |   |
| 35              | 0.          | 0.00042362  | -0.00104597    | 0.                 | -0.00011847        | -0.00048409        | · · · · · · · · · · · · · · · · · · · |       |   |
| 36              | 0.          | 0.01414736  | -0.00458040    | Õ.                 | -0.00012041        | -0.00048023        |                                       |       |   |
| 37              | O.          | -0.00768733 | 0.00103122     | 0.                 | -0.00008404        | -0.00035467        |                                       |       |   |
| 38              | 0.          | -0.00915290 | 0.00129327     | 0.                 | -0.00011861        | -0.00050592        |                                       |       |   |
| 39              | <u>0.</u>   | 0.          | 0.             | <u>0.</u>          | 0.                 | 0.                 |                                       |       |   |
| 40              | 0.          | Ö.          | 0.             | Ö.                 | Ö.                 | 0.                 |                                       | _     |   |
| . •             |             | ••          | <del>*</del> * | - *                | **                 |                    | 0                                     | 2     |   |
|                 |             | VI          | ELOCITIES IN   | SIVEN DIRECT       | ION                | ,                  | OF POOR                               | 2     |   |
| POINT           | Х           | Y           | Z              | THETA-X            | THETA-Y            | THETA-Z            | 70                                    | क     |   |
| NUMBER          | IN/SEC      | IN/SEC      | IN/SEC         | RAD/SEC            | RAD/SEC            | RAD/SEC            | Q                                     | 夕     |   |
|                 | · ·         | •           | -              |                    | •                  |                    | 2                                     | A     |   |
| 1               | 0.          | -1.641356   | -7.968073      | 0.                 | 0.111035           | -0.026378          | بد                                    | F .   |   |
| 2               | 0.          | -1.377564   | -6.858186      | 0.                 | 0.111041           | -0.026378          | QUAL                                  | hard. |   |
| 3               | Ο.          | 0.732146    | 2.039868       | Ο.                 | 0.111410           | -0.026365          | ロ                                     | PAG:  |   |
| 4               | Ο.          | -2.280028   | -11.405145     | Ο.                 | 0.181249           | -0.038402          | <b>≻</b> ,                            | 6     |   |
| 5               | Ο.          | -1.897346   | -9.594643      | 0.                 | 0.177093           | -0.038138          |                                       | ম     |   |
| 6               | 0.          | 1.069723    | 2.994161       | 0.                 | 0.149686           | -0.037594          | -                                     |       |   |
| 33              | Ο.          | 0.995781    | 3.154495       | ٥٠.                | 0.111416           | -0.026365          | 7                                     | Si    |   |
| 34              | Ο.          | -1.141672   | -6.128393      | 0.                 | 0.167766           | -0.037623          |                                       |       |   |
| 35              | 0.          | 0.334277    | 0.107195       | 0.                 | 0.151977           | -0.037202          |                                       |       |   |
| 36              | 0.          | 1.441705    | 4.430858       | 0.                 | 0.150388           | -0.037957          |                                       |       |   |
| 37              | Ο.          | -0.322439   | -2.417278      | Ο.                 | 0.111226           | -0.026371          |                                       |       |   |
| 38              | Ο.          | -0.399426   | -2.902432      | 0.                 | 0.158611           | -0.037250          |                                       |       | • |
| 39              | 0.          | 0.          | 0.             | 0                  | 0.                 | <u> </u>           |                                       |       |   |
| 40              | 0.          | 0.          | 0.             | 0.                 | 0.                 | 0.                 |                                       |       |   |
|                 |             | 500050 0    |                | THE CHECKS         | FM MODE CHASES     |                    |                                       |       |   |
| POINT           | x           | FORCES C    | DNTRIBUTED BY  |                    | EM MODE SHAPES     | THETA-Z            |                                       |       |   |
| NUMBER          | POUNDS      | POUNDS      | POUNDS         | THETA-X<br>IN-LB   | THETA-Y<br>IN-LB   | IN-LB              |                                       |       |   |
|                 | ,           |             |                |                    | • • • • •          |                    |                                       |       |   |
| 1               | 0.          | Ο.          | 0.             | Ο.                 | Ο.                 | 0.                 |                                       |       |   |
| 2               | 0.          | - 18 . 837  | -1.386         | 0                  | 16.092             | -218.707           |                                       |       |   |
| 3               | Ō.          | 18.837      | 1.386          | 0.                 | 16.092             | -218.707           |                                       |       |   |
| 4               | 0.          | Ο.          | 0.             | 0.                 | 0.                 | 0.                 |                                       |       |   |
| 5               | . 0.        | 286.090     | 25.167         | Ο.                 | 2299.156           | 27642.973          |                                       |       | • |
| 6               | 0.          | -896.338    | 56.233         | 0.                 | -1621.987          | -1753.708          |                                       |       |   |
| 33              | 0.          | 0.          | 0.             | 0.                 | 0.                 | 0.                 |                                       |       |   |
| 34              | Ο.          | 1281.743    | 9.046          | Ο.                 | 1720.860           | 32157.419          |                                       |       |   |
| 35              | 0.          | -833.369    | 60.894         | Ο.                 | -461.446           | 15626.812          |                                       |       |   |

| (                                |                                |                                  |                      |                          |                               | (                               |                                         |                                  |                            | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------|--------------------------------|----------------------------------|----------------------|--------------------------|-------------------------------|---------------------------------|-----------------------------------------|----------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 36<br>37<br>38                   | 0.<br>0.<br>0.                 |                                  | 0.<br>8.399<br>7.725 | 0.<br>0.618<br>58.884    |                               | 0.<br>97.486<br>740.263         | 0.<br>-1324.940<br>28247.012            |                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  |                                |                                  |                      |                          | CAL CONNECTION OR             |                                 |                                         |                                  |                            | The second secon |
| ELEMENT C                        | RELATIV<br>DISPLACEM<br>INCHES | ENT BAND                         |                      | I-END<br>POINT<br>NUMBER |                               | FORCE IN Y D<br>I END<br>POUNDS | IRECTION<br>J END<br>POUNDS             | FORCE IN Z DI<br>I END<br>POUNDS | RECTION<br>J END<br>POUNDS | FORCE<br>MAGNITUDE<br>POUNDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5                                | 0.0112                         | 0.0100                           | -0.0012              | 4                        | 1                             | 1144.928                        | -1144.928                               | -212.110                         | 212.110                    | 1164.410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                  |                                |                                  |                      |                          | G ELEMENTS (1<br>OMPONENTS OR | JNCOUPLED POINT<br>GROUND ARE-  |                                         |                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  |                                |                                  |                      |                          |                               | FORCE IN GIVEN D                |                                         | ,                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ELEMENT<br>NUMBER                | END                            | POINT<br>NUMBER                  | X<br>POU             |                          | Y<br>POUNDS                   | Z<br>POUNDS                     | THETA-Y<br>IN-LB                        | THETA-Z<br>IN-LB                 |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                                | I<br>J                         | 2<br>39                          | 0.<br>0.             |                          | 11045.011<br>-11045.011       | - 1595.033<br>1595.033          |                                         | 0.<br>0.                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                                | ĭ                              | 3                                |                      |                          | -3326.904                     | 985.114                         | <u> </u>                                | 0.                               |                            | *************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2<br>3                           | J<br>I                         | 40<br>5                          | 0.<br>0.             |                          | 3326.904<br>8812.753          | -985.114<br>-1175.773           | 0.<br>0.                                | 0.<br>0.                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3                                | Ĵ                              | 2                                | 0.                   |                          | -8812.753                     | 1175.773                        |                                         | 0.<br>0.                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                                | J                              | <u>6</u><br>3                    | <u> </u>             |                          | -3118.223<br>3118.223         | 898.274<br>-898.274             |                                         | <u> </u>                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| THE GYROS                        | COPIC FO                       | RCES ACTIN                       | G ON THE RO          | TOR(S)                   | ARE-                          |                                 |                                         |                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  | ROTOR<br>NUMBER                | POLAR M<br>OF INE<br>LB-IN       | RTIA                 | Y-A<br>MDM<br>In-        |                               | Z-AXIS<br>MOMENT<br>IN-LB       |                                         |                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4<br>36                          | 1 1                            |                                  | 4205.<br>4205.       | 5751.<br>5684.           |                               | 144.989<br>523.112              | *************************************** |                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SUMMARY O                        |                                | ANCE FORCE                       | <u>s</u>             |                          |                               |                                 |                                         |                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BIRTH<br>TIME<br>SECONDS         | POINT<br>NUMBER                | ROTOR M                          | AGNITUDE             | PHASE<br>Angle<br>Egrees | FORCE (LB.)<br>Y-DIRECTION    | FORCE (LB.)<br>Z-DIRECTION      |                                         |                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ο.                               | 4                              | 1                                | 5000.                | ο.                       | -2815.521                     | 2.142                           |                                         |                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  |                                | GENERALIZ                        | ED                   |                          |                               |                                 |                                         |                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GENERALIZ<br>COORDINAT<br>NUMBER |                                | FORCE<br>TO APPL<br>FORCES O     | I ED                 |                          |                               |                                 |                                         |                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1<br>2<br>3                      |                                | -2.1<br>2.1<br>0.2               | 42<br>62             |                          |                               |                                 |                                         |                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4<br>5<br>6<br>7                 |                                | 0.5<br>-0.2<br>2815.5<br>-2815.5 | 89<br>22<br>21<br>21 | -                        |                               |                                 |                                         |                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8<br>9<br>10<br>11               |                                | -343.9<br>-773.7<br>291.7<br>0.  | 05                   |                          |                               |                                 |                                         |                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

0. 0. 0. 0.

| i           |              |             |             |             |             |               |              |   |
|-------------|--------------|-------------|-------------|-------------|-------------|---------------|--------------|---|
| GENERALIZED |              |             |             | GENERALIZED | GENERALIZED | GENERAL I ZED |              |   |
| COORDINATE  | GENERALIZED  | GENERALIZED | GENERALIZED | WEIGHT      | STIFFNESS   | DAMPING VALUE | GENERALIZED  |   |
| NUMBER      | DISPLACEMENT | VELOCITY    | FORCE       | POUNDS      | LB/IN       | (LB-SEC)/IN   | ACCELERATION |   |
| 1           | -0.00593271  | 7.936141    | 2097.925    | 1.372E 03   | 0.          | 0.            | 590.7635     |   |
| 2           | 0.00133908   | -3.424323   | -487.467    | 1.449E 03   | 0.          | 0.            | -130.0123    |   |
| 3           | 0.00003997   | -0.471788   | 42.197      | 3.743E 02   | 1.076E 06   | 0.            | -0.8325      |   |
| 4           | -0.00002819  | 0.066009    | -541.084    | 2.457E 03   | 1.980E 07   | Ο.            | 2.6712       |   |
| 5           | -0.00000584  | 0.050102    | -6.095      | 1.766E 02   | 3.500E 06   | 0.            | 31.3885      |   |
| 6           | 0.02531411   | 1.863206    | -8867.550   | 1.372E 03   | 0.          | 0.            | -2497.0512   |   |
| 7           | -0.01089946  | -0.417135   | 4023.938    | 1.449E 03   | 0.          | 0.            | 1073.2240    |   |
| 8           | -0.00152487  | -0.010356   | -1483.481   | 3.743E 02   | 1.076E 06   | 0.            | 162.3856     |   |
| 9           | 0.00021130   | 0.008513    | 4054.201    | 2.457E 03   | 1.980E' 07  | 0.            | -20.3865     |   |
| 10          | 0.00022168   | 0.007352    | 804.978     | 1.766E 02   | 3.500E 06   | 0.            | 63.6412      |   |
| 11          | 0.00103225   | -2.412892   | -120.310    | 4.503E 02   | 0.          | Ο.            | - 103 . 2387 |   |
| 12          | -0.00420212  | 5.561284    | 192.770     | 1.784E O2   | 0.          | Ο.            | 417.5234     |   |
| 13          | 0.00000143   | 0.006103    | 8.769       | 1.787E 02   | 4.760E 06   | 9.891E 01     | 2.9060       |   |
| 14          | -0.00767333  | -0.322585   | 878.649     | 4.503E 02   | 0.          | 0.            | 753.9741     |   |
| 15          | 0.01773326   | 1.318569    | -807.823    | 1.784E 02   | 0.          | 0.            | -1749.6741   | • |
| 16          | 0.00001948   | -0.000203   | 92.894      | 1.787E O2   | 4.760E 06   | 9.891E 01     | 0.4400       |   |
| 1           |              |             |             |             |             |               |              |   |

ACRGX 9700 P9 (44)

ROTOR PROPERTIES FOR INDEPENDENT ROTOR (ROTOR 1)-

SPEED= 3000. RPM
ACCELERATION= 0. RPM/SEC

ANGULAR DISPLACEMENT = 24.99974918 REVOLUTIONS

|        |        | DISPLACEMENTS IN GIVEN DIRECTION |             |         |            |            |  |  |  |  |
|--------|--------|----------------------------------|-------------|---------|------------|------------|--|--|--|--|
| POINT  | X      | Y                                | Z           | THETA-X | THETA-Y    | THETA-Z    |  |  |  |  |
| NUMBER | INCHES | INCHES                           | INCHES      | RADIANS | RADIANS    | RADIANS    |  |  |  |  |
| 1      | 0.     | 0.02551177                       | -0.00512239 | 0.      | 0.00008136 | 0.00035611 |  |  |  |  |
| 2      | 0.     | 0.02195211                       | -0.00430869 | 0.      | 0.00008136 | 0.00035613 |  |  |  |  |
| 3      | 0.     | -0.00658546                      | 0.00219568  | 0.      | 0.00008125 | 0.00035731 |  |  |  |  |
| 4      | _ 0    | 0.03651526                       | -0.00710485 | 0.      | 0.00011906 | 0.00057969 |  |  |  |  |
| 5      | 0.     | 0.03069712                       | -0.00592832 | 0.      | 0.00011781 | 0:00056740 |  |  |  |  |
| 6      | Ο.     | -0.00967227                      | 0.00320016  | Ο.      | 0.00011522 | 0.00048053 |  |  |  |  |
| 33     | Ο.     | -0.01016019                      | 0.00300808  | Ο.      | 0.00008125 | 0.00035733 |  |  |  |  |
| 34     | 0.     | 0.01954141                       | -0.00361285 | 0.      | 0.00011578 | 0.00053832 |  |  |  |  |
| 35     | 0.     | -0.00045457                      | 0.00092791  | 0.      | 0.00011443 | 0.00048703 |  |  |  |  |
| 36     | 0.     | -0.01426733                      | 0.00434566  | 0.      | 0.00011591 | 0.00048383 |  |  |  |  |
| 37     | 0.     | 0.00770913                       | -0.00105427 | 0.      | 0.00008130 | 0.00035672 |  |  |  |  |
| 38     | 0.     | 0.00917577                       | -0.00133505 | 0.      | 0.00011461 | 0.00050863 |  |  |  |  |
| 39     | 0.     | 0.                               | 0.          | 0.      | 0.         | 0.         |  |  |  |  |
| 40     | 0.     | 0.                               | 0.          | 0.      | 0.         | 0.         |  |  |  |  |

|        |        | VE        |           |         |           |          |
|--------|--------|-----------|-----------|---------|-----------|----------|
| POINT  | X      | γ         | Z         | THETA-X | THETA-Y   | THETA-Z  |
| NUMBER | IN/SEC | IN/SEC    | IN/SEC    | RAD/SEC | RAD/SEC   | RAD/SEC  |
| 1      | 0.     | 1.599841  | 8.012369  | 0.      | -0.111856 | 0.025413 |
| 2      | 0.     | 1.345630  | 6.894241  | 0.      | -0.111861 | 0.025412 |
| 3      | Ο.     | -0.684586 | -2.068456 | 0.      | -0.112206 | 0.025344 |
| 4      | 0.     | 2.220163  | 11.470458 | Ο.      | -0.182110 | 0.037864 |
| 5      | 0.     | 1.854763  | 9.641096  | Ο.      | -0.178289 | 0.037109 |
| 6      | 0.     | -0.995855 | -3.038490 | ·0.     | -0.150824 | 0.035598 |
| 33     | 0.     | -0.937930 | -3.191003 | Ο.      | -0.112211 | 0.025343 |
| 34     | 0.     | 1.141820  | 6.133135  | 0.      | -0.169155 | 0.036132 |
| 35     | 0.     | -0.276457 | -0.147535 | 0.      | -0.152884 | 0.035734 |
| 36     | 0.     | -1.355066 | -4.479548 | 0.      | -0.151886 | 0.035424 |
| 37     | 0.     | 0.329037  | 2.420463  | Ο.      | -0.112034 | 0.025378 |
| 38     | 0.     | 0.436063  | 2.875520  | Ο.      | -0.159752 | 0.035782 |
| 39     | 0.     | 0.        | 0.        | 0.      | 0.        | Ο.       |
| 40     | Ö.     | 0.        | 0.        | Ō.      | 0.        | 0.       |

|        |        | FORCES CO    | NTRIBUTED BY | THE SUBSYSTE | M MODE SHAPES |            |
|--------|--------|--------------|--------------|--------------|---------------|------------|
| POINT  | X      | Y            | <b>Z</b>     | THETA-X      | THETA-Y       | THETA-Z    |
| NUMBER | POUNDS | POUNDS       | POUNDS       | IN-LB        | IN-LB         | IN-LB      |
| 1      | 0.     | · <b>0</b> . | 0.           | 0.           | 0.            | 0.         |
| 2      | 0.     | 18.762       | 1,626        | 0.           | -18.877       | 217.830    |
| 3      | 0.     | -18.762      | -1.626       | 0.           | -18.877       | 217.830    |
| 4      | 0.     | Ο.           | 0.           | Ο.           | Ο.            | 0.         |
| 5      | 0.     | -295.807     | -33.684      | 0.           | -2426.568     | -27209.151 |
| 6      | 0.     | 907 . 485    | -42.419      | 0.           | 1239.421      | 2256.436   |
| 33     | 0.     | 0.           | 0.           | 0.           | 0.            | 0.         |
| 34     | 0.     | -1357.509    | -71.050      | 0.           | -1700.477     | -31897.414 |
| 35     | 0.     | 843.077      | -48.460      | Ο.           | 337.975       | -15327.313 |

| 36<br>37                       | 0.<br>0.                         | 0.<br>-8.365                                                                                                                          | 0.<br>-0.725                 |                            | 0.<br>-114.357                   | 0.<br>1319.631        |                                   |                        |                              |
|--------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------|----------------------------------|-----------------------|-----------------------------------|------------------------|------------------------------|
|                                |                                  | 530.845 ES ARE FOR THE HAT THE ELEMENT                                                                                                |                              | ICAL CONNECTION            |                                  | -28050.409            |                                   |                        |                              |
|                                | RELATIVE<br>DISPLACEME<br>INCHES | DEAD                                                                                                                                  | I-END<br>ANCE POINT          | JEND<br>POINT              | FORCE IN Y DI<br>I END<br>POUNDS | RECTION  J END POUNDS | FORCE IN Z DIF<br>I END<br>POUNDS | RECTION  J END  POUNDS | FORCE<br>MAGNITUDE<br>POUNDS |
|                                |                                  |                                                                                                                                       |                              |                            |                                  |                       |                                   |                        |                              |
|                                | _                                | 0.0100 -0.0<br>E TYPE 5 PHYSIC<br>ENTS) EXERT ON                                                                                      |                              |                            |                                  | 1161.945              | 209.344                           | -209.344               | 1180.653                     |
|                                |                                  |                                                                                                                                       |                              | (                          | FORCE IN GIVEN D                 | IRECTION              |                                   |                        |                              |
| ELEMENT<br>NUMBER              | END                              | POINT<br>NUMBER                                                                                                                       | X<br>POUNDS                  | Y<br>POUNDS                | Z<br>POUNDS                      | THETA-Y<br>In-lb      | THETA-Z<br>IN-LB                  |                        |                              |
| 1                              | I                                | 2                                                                                                                                     | 0.                           | -11094.245                 | 1548.797                         | 0.                    | 0.                                |                        |                              |
| 1                              | Ā                                | 39                                                                                                                                    | 0.                           | 11094.245                  | - 1548 . 797                     | 0.                    | <b>0</b> .                        |                        |                              |
| 2 2                            | <u>1</u>                         | 3<br>40                                                                                                                               | <u>0.</u><br>0.              | 3352.860<br>-3352.860      | -916.161<br>916.161              | 0.<br>                | 0.<br>0.                          |                        |                              |
| 3                              | J                                | 5<br>2                                                                                                                                | 0.<br>0.                     | -8834.451<br>8834.451      | 1137.095<br>-1137.095            | 0.<br>0.              | 0.<br>0.                          |                        |                              |
| 4                              | <u>I</u>                         | <u>6</u> 3                                                                                                                            | 0.                           | 3141.491<br>-3141.491      | -834.069<br>834.069              | , O.                  | 0.<br>0.                          |                        |                              |
| THE GYRO                       | -                                | CES ACTING ON T                                                                                                                       |                              |                            | 3311333                          | •                     | •                                 |                        |                              |
| POINT                          | ROTOR                            | POLAR MOMENT<br>OF INERTIA                                                                                                            |                              | AXIS<br>MENT               | Z-AXIS<br>MOMENT                 |                       |                                   | <del></del> -          |                              |
| NUMBER                         | NUMBER                           | LB-IN++2                                                                                                                              |                              | -LB                        | IN-LB                            |                       |                                   |                        |                              |
| 4<br>36                        | 1 1                              | 184205.                                                                                                                               | -5670                        |                            | 273.964                          |                       |                                   |                        | <del></del>                  |
| SUMMARY                        |                                  | 184205.                                                                                                                               | -5305                        | .3/6 -22                   | 747.371                          |                       |                                   |                        |                              |
|                                | OF UNBALA                        | 184205.                                                                                                                               | -5305                        | .378 -22                   |                                  |                       |                                   |                        |                              |
| BIRTH<br>TIME<br>SECONDS       | POINT                            |                                                                                                                                       | PHASE<br>DE ANGLE            |                            | FORCE (LB.)                      |                       |                                   |                        |                              |
| TIME                           | POINT                            | NCE FORCES-                                                                                                                           | PHASE<br>DE ANGLE<br>DEGREES | FORCE (LB.)                | FORCE (LB.)                      |                       |                                   |                        |                              |
| TIME<br>SECONDS                | POINT<br>NUMBER                  | NCE FORCES-  ROTOR MAGNITUM NUMBER GM-IN 1 5000 GENERALIZED                                                                           | PHASE<br>DE ANGLE<br>DEGREES | FORCE (LB.)<br>Y-DIRECTION | FORCE (LB.)<br>Z-DIRECTION       |                       |                                   |                        |                              |
| TIME<br>SECONDS                | POINT<br>NUMBER<br>4             | NCE FORCES-  ROTOR MAGNITUM NUMBER GM-IN 1 5000                                                                                       | PHASE<br>DE ANGLE<br>DEGREES | FORCE (LB.)<br>Y-DIRECTION | FORCE (LB.)<br>Z-DIRECTION       |                       |                                   |                        |                              |
| O.  GENERALI COORDINA NUMBER   | POINT<br>NUMBER<br>4             | ROTOR MAGNITUM NUMBER GM-IN  1 5000  GENERALIZED FORCE DUE TO APPLIED FORCES ONLY  4.809                                              | PHASE<br>DE ANGLE<br>DEGREES | FORCE (LB.)<br>Y-DIRECTION | FORCE (LB.)<br>Z-DIRECTION       |                       |                                   |                        |                              |
| O.  GENERALI COORDINA          | POINT<br>NUMBER<br>4             | ROTOR MAGNITUR NUMBER GM-IN  1 5000  GENERALIZED FORCE DUE TO APPLIED FORCES ONLY  4.809 -4.809 -0.587                                | PHASE<br>DE ANGLE<br>DEGREES | FORCE (LB.)<br>Y-DIRECTION | FORCE (LB.)<br>Z-DIRECTION       |                       |                                   |                        |                              |
| GENERALI<br>COORDINA<br>NUMBER | POINT<br>NUMBER<br>4             | ROTOR MAGNITUR MUMBER GM-IN  1 5000  GENERALIZED FORCE DUE TO APPLIED FORCES ONLY  4.809 -4.809 -0.587 -1.321 0.498                   | PHASE<br>DE ANGLE<br>DEGREES | FORCE (LB.)<br>Y-DIRECTION | FORCE (LB.)<br>Z-DIRECTION       |                       |                                   |                        |                              |
| GENERALI COORDINA NUMBER       | POINT<br>NUMBER<br>4             | ROTOR MAGNITURNUMBER GM-IN  1 5000  GENERALIZED FORCE DUE TO APPLIED FORCES ONLY  4.809 -4.809 -4.809 -1.321 0.498 -2815.517 2815.517 | PHASE<br>DE ANGLE<br>DEGREES | FORCE (LB.)<br>Y-DIRECTION | FORCE (LB.)<br>Z-DIRECTION       |                       |                                   |                        |                              |
| GENERALI<br>COORDINA<br>NUMBER | POINT<br>NUMBER<br>4             | ROTOR MAGNITUI NUMBER GM-IN  1 5000  GENERALIZED FORCE DUE TO APPLIED FORCES ONLY  4.809 -4.809 -0.587 -1.321 0.498 -2815.517         | PHASE<br>DE ANGLE<br>DEGREES | FORCE (LB.)<br>Y-DIRECTION | FORCE (LB.)<br>Z-DIRECTION       |                       |                                   |                        |                              |

| 12 | 0. |
|----|----|
| 13 | 0. |
| 14 | 0. |
| 15 | 0. |
| 16 | 0. |

| GENERALIZED |              |             |             | GENERALIZED | GENERALIZED | GENERALIZED   |              |
|-------------|--------------|-------------|-------------|-------------|-------------|---------------|--------------|
| COORDINATE  | GENERALIZED  | GENERALIZED | GENERALIZED | WEIGHT      | STIFFNESS   | DAMPING VALUE | GENERALIZED  |
| NUMBER      | DISPLACEMENT | VELOCITY    | FORCE       | POUNDS      | LB/IN       | (LB-SEC)/IN   | ACCELERATION |
| 1           | 0.00573250   | -7.993238   | -2000.988   | 1.372E 03   | 0.          | 0.            | -563.4668    |
| 2           | -0.00137468  | 3.429242    | 507.561     | 1.449E 03   | <u> </u>    | 0.            | 135.3714     |
| 3           | -0.00004335  | 0.476910    | -38.959     | 3.743E 02   | 1.076E 06   | Ö.            | 7.9380       |
| 1 4         | 0.00002635   | -0.066357   | 504.065     | 2.457E 03   | 1.980E 07   | Ö.            | -2.7821      |
| 5           | -0.00000372  | -0.076811   | 14.649      | 1.766E 02   | 3.500E 06   | Ŏ.            | 60.5520      |
| 6           | -0.02544950  | -1.789783   | 8927.608    | 1.372E 03   | 0.          | 0.            | 2513.9631    |
| 1 7         | 0.01091575   | 0.432514    | -4039.388   | 1.449E 03   | 0.          | 0.            | -1077.3447   |
| 8           | 0.00150688   | 0.021673    | 1484.309    | 3.743E 02   | 1.076E 06   | Ö.            | -141.5476    |
| 9           | -0.00021180  | -0.007892   | -4058.038   | 2.457E 03   | 1.980E 07   | 0.            | 21.3253      |
| 10          | -0.00023309  | 0.025221    | -801.295    | 1.766E 02   | 3.500E 06   | O.            | 31.7929      |
| 11.         | -0.00105548  | 2.416374    | 120.267     | 4.503E Q2   | 0.          | 0.            | 103.2016     |
| 12          | 0.00406523   | -5.601686   | -185.691    | 1.784E 02   | 0.          | 0.            | -402.1903    |
| 13          | -0.00000168  | -0.005691   | -7.721      | 1.787E O2   | 4.760E 06   | 9.891E 01     | 1.8247       |
| 14          | 0.00769519   | 0.329839    | -886.480    | 4.503E 02   | Ō.          | 0.            | -760.6942    |
| 15          | -0.01783598  | -1.268885   | 814.985     | 1.784E 02   | 0.          | 0.            | 1765.1854    |
| 16          | -0.00001940  | 0.001117    | -91.077     | 1.787E 02   | 4.760E 06   | 9.891E O1     | 2.4907       |
| 91          |              |             |             |             |             |               |              |

| OUTPUT PL | OT FIL | EIS. | A BINARY | SEQUENTIAL | FILE |
|-----------|--------|------|----------|------------|------|
|-----------|--------|------|----------|------------|------|

| OUTPUT PLOT FILE IS A BINARY SEQUENT                                                     | IAL FILE            |          |
|------------------------------------------------------------------------------------------|---------------------|----------|
| LISTING OF AT LEAST PART OF DUTPUT PE                                                    | OT FILE-            |          |
|                                                                                          |                     |          |
| 8 1 8 1025                                                                               | ,                   | l l      |
| 1 1 0. 0.                                                                                | 0.                  |          |
| 1 3 0. 0.<br>4 1 0. 0.                                                                   | <u> </u>            |          |
| 4 3 0. 0.                                                                                | 0.                  | •        |
| 37 1 -50.000 0.                                                                          | 0.                  | <b>"</b> |
| 37 3 -50.000 0.                                                                          | 0.                  |          |
| 38 1 1-50.000 0.                                                                         | 0.                  |          |
| 38 3 -50.000 0.                                                                          | 0.                  |          |
| 5 5 5                                                                                    |                     |          |
| 3 2 1                                                                                    |                     |          |
| 3 2 3                                                                                    |                     |          |
| 3 5 3                                                                                    | •                   |          |
| 4 3 1                                                                                    |                     |          |
| 4 3 3                                                                                    |                     |          |
| 4 6 1                                                                                    |                     |          |
| 4 6 3                                                                                    | •                   |          |
| 0. 3000.0 0.                                                                             | 0.                  | 0.       |
| 0.<br>0.<br>0.                                                                           | 0.<br>0.            |          |
| 0. 0.                                                                                    | o.                  | <u> </u> |
| Ö. Ö.                                                                                    | 0.                  |          |
| 0. 0.                                                                                    | 0.                  |          |
| 0.                                                                                       | 0.                  | į.       |
| 0.                                                                                       | 0.                  | ii ii    |
| 0. 0.01000 0.                                                                            | 0.                  |          |
| 0. 0.01000 0.                                                                            | 0.                  | 1        |
| 0. 0.                                                                                    | 0.                  |          |
| 0. 0.                                                                                    | 0.                  |          |
| 0. 0.                                                                                    | 0.                  |          |
| 0. 0.                                                                                    | 0.                  | <u> </u> |
| 0. 0.                                                                                    | 0.                  | 1        |
| 0. 0.<br>0. 0.                                                                           | <u> </u>            |          |
| 0.0005000 3000.0 0.                                                                      | 0.0250000Q          | 0.       |
| 0.0000094 0.007831                                                                       | 0.                  |          |
| 0.00002663 0.167883                                                                      | 0.                  |          |
| 0.00001077 0.064133                                                                      | 0.                  |          |
| 0.00020520                                                                               | 0.                  |          |
| -0.00000000 0.000040<br>0.0000018 0.003689                                               | 0.118<br>3.194      |          |
| -0.00000132 -0.006846                                                                    | 0.222               |          |
| -0.00002222 -0.053297                                                                    | -7.959              | 1        |
| 0.00018 0.00982 0.                                                                       |                     |          |
| 15.004 15.004                                                                            | 15.004              |          |
| 230.258 230.258<br>-15.004 -15.004                                                       | 230.258<br>-15.004  | 1        |
| -15.004 -15.004 -230.258                                                                 | -15.004<br>-230.258 |          |
| -1.264                                                                                   | -1.264              |          |
| -21.225 -21.225                                                                          | -21.225             |          |
|                                                                                          | 1.264               |          |
| 21.225 21.225                                                                            | 21.225              |          |
| 1.264<br>21.225<br>21.225<br>0.0010000<br>3000.0<br>0.00001672<br>0.00022502<br>0.657962 | 0.05000000          | 0.       |
| 0.00001672 0.066912<br>0.00022502 0.657962                                               | 0.                  |          |
| 0.00022502 0.657962                                                                      | 0.<br>0.            |          |
| 0.247373                                                                                 | <b>U</b> .          | <b> </b> |
|                                                                                          |                     |          |

| - 11               | ·                   |                      |                     |                                               | `           |                                       |             |   |             | , |     |
|--------------------|---------------------|----------------------|---------------------|-----------------------------------------------|-------------|---------------------------------------|-------------|---|-------------|---|-----|
| Ш                  |                     |                      |                     |                                               |             |                                       |             |   |             |   |     |
| - 11               | 0.00077849          | 1.461820             | . <b>O.</b>         |                                               |             |                                       |             |   |             |   |     |
| - 11               | 0.0000079           | 0.005175             | 1.768               |                                               |             |                                       |             |   |             |   |     |
| -11                | 0.00001721          | 0.088271             | 20.892              |                                               |             | <del></del>                           |             |   |             |   |     |
| - 11               | -0.00000470         | -0.001465            | 3.634               |                                               |             |                                       |             |   |             |   |     |
| ll l               | 0.00000761          | 0.229270             | -27.652             |                                               |             |                                       |             |   |             |   |     |
| ll l               | 0.00056             | 0.00944 0.           |                     |                                               |             |                                       |             |   |             |   |     |
| ]                  | 72.870              | 72.870               | 72.870              |                                               |             |                                       |             |   |             |   |     |
| - 11               | 557.798             | 557.798              | 557.798             |                                               |             |                                       |             |   |             |   |     |
| ll                 | -72.870             | -72.870              | -72.870             |                                               |             |                                       |             |   |             |   |     |
| li li              | -557.798            | -557.798             | -557.798            |                                               |             |                                       |             |   |             |   |     |
|                    | -4.094              | -4.094               | -4.094              |                                               |             | · · · · · · · · · · · · · · · · · · · |             |   |             |   |     |
| ()                 | -12.203             | -12.203              | - 12 . 203          |                                               |             |                                       |             |   |             |   |     |
| #                  | 4.094               | 4.094                | 4.094               |                                               |             |                                       |             |   |             |   |     |
| 11                 | 12.203              | 12.203               | 12.203              |                                               |             |                                       |             |   |             |   |     |
| -                  | 0.0015000           | 3000.0 0.            | 0.07500000          | 0.                                            |             |                                       |             |   |             |   |     |
| - 11               | 0.00008096          | 0.201962             | 0.                  |                                               |             |                                       |             |   |             |   |     |
| II.                | 0.00069202          | 1.197454             | 0.                  |                                               |             |                                       |             |   |             |   |     |
| #                  | 0.00027534          | 0.531994             | 0.                  |                                               |             |                                       |             |   |             |   |     |
| -∐                 | 0.00164013          | 1.963227             | <u> </u>            |                                               |             |                                       |             |   |             |   |     |
| Ш                  | 0.00000949          | 0.035764             | 6.474               |                                               |             |                                       |             |   |             |   |     |
| 11                 | 0.00011922          | 0.346955             | 41.671              |                                               |             |                                       |             |   |             |   |     |
| - 11               | 0.00000251          | 0.032435             | 19.325              |                                               |             |                                       |             |   |             |   |     |
| J                  | 0.00023341          | 0.657456             | -45.672             |                                               |             |                                       |             |   |             |   |     |
| -                  | 0.00097             | 0.00903 0.           | 47E 670             |                                               |             |                                       |             |   |             |   |     |
| - 11               | 175.670             | 175.670<br>869.411   | 175.670             |                                               |             |                                       |             | • |             |   |     |
| j)                 | 869.411<br>-175.670 | -175.670             | 869.411<br>-175.670 |                                               |             |                                       |             |   |             |   |     |
|                    | -869.411            | -869.411             | -869.411            | <del></del>                                   |             |                                       |             |   |             |   |     |
| ll                 | -1.333              | -1.333               | -1.333              |                                               |             |                                       |             |   |             |   |     |
| - 11               | 74.811              | 74.811               | 74.811              |                                               |             |                                       |             |   |             |   |     |
| li                 | 1.333               | 1.333                | 1.333               |                                               |             |                                       |             |   |             |   |     |
| 11-                | -74.811             | -74.811              | -74.811             | ·                                             | <del></del> | <del></del>                           |             |   | <del></del> |   |     |
| - 11               | 0.0020000           | 3000.0 0.            | 0.10000000          | 0.                                            |             |                                       |             |   |             |   |     |
| - !!               | 0.00023031          | 0.405774             | 0.                  | •                                             |             |                                       |             |   |             |   |     |
| li                 | 0.00140063          | 1.612629             | Ö.                  |                                               |             |                                       |             |   |             |   |     |
|                    | 0.00063139          | 0.905093             | <u> </u>            |                                               |             |                                       |             |   |             |   | ·   |
| 11                 | 0.00272247          | 2.349578             | Ö.                  |                                               |             |                                       |             |   |             |   |     |
| - []               | 0.00004442          | 0.111813             | 12.646              |                                               |             |                                       |             |   |             |   |     |
| 11                 | 0.00038136          | 0.703936             | 44.688 *            |                                               |             |                                       |             |   |             |   |     |
| -                  | 0.00002594          | 0.058152             | 60.431              |                                               |             |                                       |             |   |             |   |     |
|                    | 0.00061597          | 0.816088             | -31.739             |                                               |             |                                       |             |   |             |   | 1   |
| 1                  | 0.00138             | 0.00862 0.           |                     |                                               |             |                                       |             |   |             |   |     |
| 11                 | 322.392             | 322.392              | 322.392             |                                               |             |                                       |             |   |             |   |     |
|                    | 1135.017            | 1135.017             | 1135.017            |                                               |             |                                       |             |   |             |   |     |
| - 11               | -322.392            | -322.392             | -322.392            |                                               |             |                                       |             |   |             |   |     |
| ll l               | -1135.017           | -1135.017            | -1135.017           |                                               |             |                                       |             |   |             |   |     |
| 11                 | 10.818              | 10.818               | 10.818              |                                               |             |                                       |             |   |             |   |     |
| 11                 | 172.825             | 172.825              | 172.825             |                                               |             |                                       |             |   |             |   |     |
| 11                 | -10.818             | -10.818              | -10.818             |                                               |             |                                       |             |   |             |   |     |
| - 11               | -172.825            | ~ 172.825            | - 172 . 825         |                                               |             |                                       |             |   |             |   |     |
| -                  | 0.0025000           | 3000.0 0.            | 0.12499999          | <u>       0.                             </u> |             |                                       |             |   | <del></del> |   |     |
| - 11               | 0.00049786          | 0.675256             | 0.                  |                                               |             |                                       |             |   |             |   | j   |
| H                  | 0.00227675          | 1.863908             | 0.                  |                                               |             |                                       |             |   |             |   | - 1 |
| 1                  | 0.00119163          | 1.343257             | 0.                  |                                               |             |                                       |             |   |             |   |     |
|                    | 0.00396978          | 2.616800<br>0.232914 | 0.<br>17.801        |                                               |             | <del></del>                           |             |   |             |   |     |
| - 11               | 0.00012903          | 1.001311             | 17.801<br>30.255    |                                               |             |                                       |             |   |             |   |     |
|                    | 0.00081255          | 0.104951             | 129.571             |                                               |             |                                       |             |   |             |   | - 1 |
| 8                  | 0.00006343          | 0.104951             | 29.614              |                                               |             |                                       |             |   |             |   | Į   |
| XFBOX 9700 P9 1441 |                     | 0.00817 0.           | 43.014              |                                               |             |                                       | <del></del> |   |             |   |     |
| 2                  | 520.979             | 520.979              | 520.979             |                                               |             |                                       |             |   | •           |   |     |
| *                  | 1373.412            | 1373.412             | 1373.412            |                                               |             |                                       |             |   |             |   |     |
| - (1               | .3/3.412            | 10,0.712             | .5/5.7/2            |                                               |             |                                       |             |   |             |   | - 1 |

| II.   | -520.979     | -520.979      | -520.979        |                                        |                                        |                                       |   | II.                                    |
|-------|--------------|---------------|-----------------|----------------------------------------|----------------------------------------|---------------------------------------|---|----------------------------------------|
| ı     | -1373.412    | -1373.412     | -1373.412       |                                        |                                        |                                       |   |                                        |
| N     | 23.582       | 23.582        | 23.582          |                                        |                                        |                                       |   | i i                                    |
| 2     | 174.566      | 174.566       | 174.566         |                                        |                                        |                                       |   |                                        |
| _     | -23.582      | -23.582       | -23.582         |                                        |                                        |                                       |   |                                        |
| - 11  | -174.566     | -174.566      | -174,566        |                                        |                                        |                                       |   | <b>!</b> }                             |
| Ш     | 0.0030000    |               | 0.14999999      | •                                      |                                        |                                       |   | <b>}</b>                               |
| - 11  |              | 3000.0 0.     |                 | 0.                                     |                                        |                                       |   |                                        |
| - II  | 0.00091711   |               | 0.              |                                        |                                        |                                       |   | ii.                                    |
| - 11  | 0.00323562   |               | 0.              |                                        |                                        |                                       |   | ii.                                    |
| - 11  | 0.00197842   | -             | 0.              |                                        |                                        |                                       |   | 33                                     |
| 1     | 0.00530994   | 2.712571      | <u> </u>        |                                        |                                        |                                       |   |                                        |
| H     | 0.00028304   | 0.387827      | 21.656          |                                        |                                        |                                       |   | 11                                     |
| - 41  | 0.00135688   | 1.148992      | 8.952           |                                        |                                        |                                       |   | łi                                     |
| - 11  | 0.00015821   | 0.309106      | 201.337         |                                        |                                        |                                       |   | <b>i</b>                               |
| - 11  | 0.00143405   | 0.958972      | <u> 103.448</u> |                                        |                                        |                                       |   | ii.                                    |
| - II  | 0.00233      | 0.00767 0.    |                 |                                        |                                        |                                       |   |                                        |
| - 11  | 783.636      | 783.636       | 783.636         |                                        |                                        |                                       |   |                                        |
| - 11  | 1632.676     | 1632.676      | 1632.676        |                                        |                                        |                                       |   | ji                                     |
| ]]    | -783.636     | -783.636      | -783.636        |                                        |                                        |                                       |   |                                        |
| - 11: | - 1632.676   | -1632.676     | -1632.676       |                                        |                                        |                                       |   | ····                                   |
| - 11  | 26.536       | 26.536        | 26.536          |                                        |                                        |                                       |   | l)                                     |
| }     | 76.210       | 76.210        | 76.210          |                                        |                                        | •                                     |   | 11                                     |
| - 11  | -26.536      | -26.536       | -26.536         |                                        |                                        |                                       |   | į.                                     |
| - 11  | -76.210      | -76.210       | -76.210         |                                        |                                        |                                       |   |                                        |
| - 11  | 0.0035000    |               | 0.17499999      | 0.                                     |                                        |                                       |   | it                                     |
| - li  |              |               |                 | U.                                     |                                        |                                       |   | #                                      |
| ₩     | 0.00151857   |               | 0.              |                                        |                                        |                                       |   | 11                                     |
| -  }  | 0.00420573   |               | <u>0.</u>       |                                        |                                        | ····                                  |   |                                        |
| - II  | 0.00299178   |               | 0.              |                                        |                                        |                                       |   | ll.                                    |
| - II  | 0.00664867   |               | 0.              |                                        |                                        |                                       |   | . 1                                    |
| - 11  | 0.00052135   |               | 24.621          |                                        |                                        |                                       |   |                                        |
| -   . | 0.00193243   |               | -12.004         |                                        |                                        |                                       |   |                                        |
| - 11  | 0.00040662   |               | 234.443         |                                        |                                        |                                       |   | 11                                     |
| Ш     | 0.00201441   |               | 137.265         |                                        | •                                      |                                       |   |                                        |
| ij    | 0.00285      | 0.00715 0.    |                 |                                        |                                        |                                       |   | 1)                                     |
| - 11. | 1111.079     | 1111.079      | 1111.079        | ······································ |                                        |                                       |   |                                        |
| - !!  | 1929.037     | 1929.037      | 1929.037        |                                        |                                        |                                       |   | <u> </u>                               |
| - ii  | -1111.079    | -1111.079     | -1111.079       |                                        |                                        |                                       |   | ţį                                     |
| - 11  | - 1929 . 037 | - 1929.037    | - 1929 . 037    |                                        |                                        |                                       |   | \\                                     |
| H     | 20.105       | 20.105        | 20.105          |                                        |                                        |                                       |   |                                        |
| - 11  | -37.334      | -37.334       | -37.334         |                                        |                                        |                                       |   |                                        |
| - 11  | -20.105      | -20.105 •     | -20.105         |                                        |                                        |                                       |   | 1                                      |
| - 11  | 37.334       | 37.334        | 37.334          |                                        |                                        |                                       |   | il.                                    |
| - { . | 0.0040000    | 3000.0 0.     | 0.2000000       | 0.                                     |                                        |                                       |   |                                        |
| H     | 0.00231684   |               | 0.              |                                        |                                        |                                       |   | —————————————————————————————————————— |
| И     | 0.00514205   |               | 0.              |                                        |                                        |                                       |   | 11                                     |
| II.   | 0.00421617   |               | 0.              | •                                      |                                        |                                       | • | 11                                     |
| II.   | 0.00789419   |               | <u> </u>        |                                        |                                        |                                       | · | li                                     |
| - 1   | 0.00085498   |               | 25.416          |                                        |                                        |                                       |   | 11                                     |
| H     | 0.00245970   | 0.964772      | -26.363         |                                        |                                        |                                       |   | ii.                                    |
|       | 0.00086197   |               | 216.322         |                                        |                                        |                                       |   | 11                                     |
| - IL  | 0.00275584   | 1.522192      | 128.053         |                                        |                                        |                                       |   | <b>H</b>                               |
| II.   | 0.00334      | 0.00666 0.    |                 |                                        |                                        |                                       |   |                                        |
| - #   | 1483.445     | 1483.445      | 1483.445        |                                        |                                        |                                       |   | 11                                     |
| l l   | 2218.628     | 2218.628      | 2218.628        |                                        |                                        |                                       |   | 11                                     |
| 1     | -1483.445    | - 1483 . 445  | ~1483.445       |                                        |                                        | •                                     |   | . 11                                   |
| - 11  | -2218.628    | -2218.628     | -2218.628       |                                        |                                        | · · · · · · · · · · · · · · · · · · · |   |                                        |
| 3     | 9.628        | 9.628         | 9.628           |                                        |                                        |                                       |   | ii ii                                  |
| žΝ    | -101.641     | -101.641      | -101.641        |                                        |                                        |                                       |   | 11                                     |
| 8     | -9.628       | -9.628        | -9.628          |                                        |                                        |                                       |   | ll l                                   |
| - E   | 101.641      | 101.641       | 101.641         |                                        | ······································ |                                       |   |                                        |
| 81    | 0.0045000    | 3000.0 0.     | 0.22500001      | Ο.                                     |                                        |                                       |   | ll l                                   |
| 1     | 0.00329747   |               | 0.              | <del>=</del> :                         |                                        |                                       |   |                                        |
| ∥     |              | = • • • • = • | <b>~</b> ·      |                                        |                                        |                                       |   | . 11                                   |
| 11.   |              |               |                 | <del></del>                            |                                        |                                       |   |                                        |

| - 11         |              | •           |              | ٠٠,         |                                         | 1           | • |                                       |
|--------------|--------------|-------------|--------------|-------------|-----------------------------------------|-------------|---|---------------------------------------|
| ]]           | •            |             |              | - (         |                                         | -           |   | i                                     |
| - 11         | •            |             |              | •           |                                         |             |   | (                                     |
| - {          |              |             |              |             |                                         |             |   | · ·                                   |
| - 11         | 0.00598850   | 1.547864    | •            |             |                                         |             |   |                                       |
| - II         |              |             | 0.           |             |                                         |             |   |                                       |
| - 11         | 0.00562887   |             | 0.           |             |                                         |             |   |                                       |
| - 11         | 0.00897172   |             | 0.           |             |                                         |             |   |                                       |
| - 11         | 0.00128609   | 0.953392    | 21.868       |             |                                         |             |   |                                       |
| - 11         | 0.00288474   | 0.728583    | -32.545      |             |                                         |             |   |                                       |
| i i          | 0.00146769   |             | 184.928      |             |                                         |             |   |                                       |
|              | 0.00344824   | 1.180505    | 121.381      |             |                                         |             |   |                                       |
| Ш            |              |             |              | <del></del> |                                         | <del></del> |   |                                       |
| - 11         | 0.00379      | 0.00621 0.  |              |             |                                         |             |   |                                       |
| - 11         | 1875.141     | 1875.141    | 1875.141     |             |                                         |             |   | į                                     |
| - 11         | 2450.750     | 2450.750    | 2450.750     |             |                                         |             |   |                                       |
| - II         | - 1875 . 141 | -1875.141   | - 1875 . 141 |             |                                         |             |   |                                       |
|              | -2450.750    | -2450.750   | -2450.750    |             | *************************************** |             |   |                                       |
| - 11         | -5.823       | -5.823      | -5.823       |             |                                         |             |   | 1                                     |
| - ii         | -113.892     |             |              |             |                                         |             |   |                                       |
| - 11         |              | -113.892    | -113.892     |             |                                         |             |   |                                       |
| II.          | 5.823        | 5.823       | 5.823        |             |                                         |             |   |                                       |
| - 11         | 113.892      | 113.892     | 113.892      |             |                                         |             |   |                                       |
| li.          | 0.0050000    | 3000.0 0.   | 0.25000001   | Ο.          |                                         |             |   |                                       |
| - 11         | 0.00441533   | 2.333125    | 0.           |             |                                         |             |   | i                                     |
| - 11         | 0.00665826   |             | Ö.           |             | •                                       |             |   | }                                     |
| H            | 0.00719680   |             | <u> </u>     |             |                                         |             |   |                                       |
| II.          |              |             |              |             |                                         |             |   |                                       |
| I            | 0.00980803   |             | 0.           |             |                                         |             |   | i                                     |
| - 11         | 0.00180009   |             | 13.593       |             |                                         |             |   | ł                                     |
| - IL         | 0.00318351   | 0.462814    | -35.747      |             |                                         |             |   |                                       |
| - II         | 0.00213842   | 1.385152    | 188.421      |             |                                         |             |   |                                       |
| - 11         | 0.00390454   | 0.652621    | 140.656      |             |                                         |             |   |                                       |
| - 11         | 0.00420      | 0.00580 0.  |              |             |                                         |             |   |                                       |
| - 11         | 2278.100     |             |              |             |                                         |             |   |                                       |
| ⊪            |              | 2278 . 100  | 2278.100     |             |                                         |             |   |                                       |
| - 11         | 2607.903     | 2607.903    | 2607.903     |             |                                         |             |   |                                       |
| - 11         | -2278.100    | ~2278.100   | -2278.100    |             |                                         |             |   |                                       |
| - II         | -2607.903    | -2607.903   | -2607.903    |             |                                         |             |   |                                       |
| - 11         | -33.614      | -33.614     | -33.614      |             |                                         |             |   | i                                     |
| - II         | -106.579     | - 106 . 579 | - 106 . 579  |             |                                         |             |   |                                       |
| Ш            | 33.614       | 33.614      | 33.614       |             |                                         |             |   | İ                                     |
| - 11         |              |             |              |             |                                         |             |   | ·                                     |
| - 11         | 106.579      | 106.579     | 106.579      | _           | •                                       | ,           |   |                                       |
| - 11.        | 0.0055000    | 3000.0 0.   | 0.27500002   | <u> </u>    |                                         |             |   |                                       |
| - 1)         | 0.00560911   | 2.422880    | 0.           |             |                                         | ;           |   | j                                     |
| - 11         | 0.00707315   | 0.541642    | Ο.           |             |                                         |             |   | i                                     |
| - 11         | 0.00887043   | 3.414003    | 0.           |             |                                         |             |   |                                       |
| - 11         | 0.01031810   | 0.636890    | Ŏ. ·         |             |                                         |             |   |                                       |
| ⊪            | 0.00236478   | 1.153487    | 3.038        |             | ···                                     | <del></del> |   |                                       |
| - II         |              |             |              |             |                                         |             |   | ł                                     |
| Н            | 0.00334333   | 0.172567    | -38.732      |             |                                         |             |   | l                                     |
| H            | 0.00286025   | 1.507383    | 231.231      |             |                                         |             |   |                                       |
|              | 0.00412946   | 0.275198    | 155.562      |             |                                         | ·           |   |                                       |
| - 11         | 0.00460      | 0.00540 0.  |              |             |                                         |             |   | · · · · · · · · · · · · · · · · · · · |
|              | 2700.117     | 2700.117    | 2700.117     |             |                                         |             |   | i                                     |
| II.          | 2682.284     | 2682.284    | 2682.284     |             |                                         |             |   | ĺ                                     |
|              | -2700.117    | -2700.117   | -2700.117    |             |                                         |             |   | i                                     |
| ∦            | <del></del>  |             |              |             |                                         |             |   |                                       |
| H            | -2682.284    | -2682.284   | -2682.284    |             |                                         |             |   | 1                                     |
| .            | -81.960      | -81.960     | -81.960      |             |                                         |             |   | t t                                   |
| -            | -114.910     | -114.910    | -114.910     |             |                                         |             |   | 1                                     |
| II.          | 81.960_      | 81.960      | 81.960       |             |                                         |             |   |                                       |
| -            | 114.910      | 114.910     | 114.910      |             |                                         |             |   |                                       |
| - JJ         | O.00600CO    | 3000.0 0.   | 0.3000003    | 0.          |                                         |             |   | ĺ                                     |
| H            | 0.00681977   | 2.404192    | 0.           |             |                                         |             |   | <b>!</b>                              |
|              | 0.00011317   |             | 0.<br>0.     |             |                                         |             |   | !                                     |
| ∦            | 0.01059037   |             |              |             |                                         |             |   | -                                     |
| _11          |              |             | 0.           |             |                                         |             |   | j                                     |
| 3∥           | 0.01042101   | -0.242399   | 0.           |             |                                         |             |   | ł                                     |
| <b>I</b>     | 0.00293970   |             | -6.930       |             |                                         |             |   | ļ                                     |
| 9700 P1 (44) | 0.00335323   | -0.134018   | -39.793      |             |                                         |             |   | 1                                     |
| 7            | 0.00363237   | 1.545296    | 279.566      |             | · · · · · · · · · · · · · · · · · · ·   |             |   |                                       |
| XE Q         | 0.00418701   |             | 136.575      |             |                                         |             |   | •                                     |
| ×II          | 0.00497      | 0.00503 0.  |              |             |                                         |             |   |                                       |
|              | 0.00457      | 0.00303 0.  |              |             |                                         |             |   | İ                                     |
|              |              |             |              |             |                                         |             |   |                                       |

| H     |                         |                       |              |              |                                        |   |                                       | ì        |
|-------|-------------------------|-----------------------|--------------|--------------|----------------------------------------|---|---------------------------------------|----------|
| - 1   | 3138.978                | 3138.978              | 3138.978     |              |                                        |   |                                       |          |
|       | 2649.097                | 2649.097              | 2649.097     |              |                                        |   |                                       |          |
| დ ∥   | -3138.978               | -3138.978             | -3138.978    |              |                                        |   |                                       | ļ        |
| 206   | -2649.097               | -2649.097             | -2649.097    |              |                                        |   |                                       |          |
| ·     | - 155 . 548             | - 155 . 548           | - 155.548    |              |                                        |   |                                       | Į.       |
| - II  | - 153.913               | -153.913              | - 153.913    |              |                                        |   |                                       | l        |
| - 11  | 155.548                 | 155.548               | 155.548      |              |                                        |   |                                       | ł        |
| - #   | 153.913                 | 153.913               | 153.913      |              |                                        |   |                                       |          |
| - 1   | 0.0065000               | 3000.0 0.             | 0.32500003   | ο.           |                                        |   |                                       |          |
| II.   | 0.00799818              | 2.296215              | 0.           | <b>.</b>     |                                        |   |                                       | 1        |
|       | 0.00698289              | -0.752714             | 0.           |              |                                        |   |                                       |          |
| ╢     | 0.01229799              | 3.363643              | <u> </u>     |              | ······································ |   |                                       |          |
| ı II  | 0.01006273              | -1.199034             | Õ.           |              |                                        |   |                                       |          |
| - 11  | 0.00348647              | 1.042204              | - 15 . 873   |              |                                        |   |                                       |          |
| l li  | 0.00320917              | -0.442422             | -40.142      |              |                                        |   |                                       |          |
| -     | 0.00435040              |                       | 311.490      |              | F-1-2.                                 |   |                                       |          |
| - 11  | 0.00402790              | -0.606954             | 106.415      |              |                                        | • |                                       |          |
| - 11  | 0.00529                 | 0.00471 0.            |              |              |                                        |   |                                       |          |
| II.   | 3568.602                | 3568.602              | 3568.602     |              |                                        |   |                                       |          |
| ╟     | 2476.871                | 2476.871              | 2476.871     |              |                                        |   | · · · · · · · · · · · · · · · · · · · |          |
| - 11  | -3568.602               | -3568.602             | -3568.602    |              |                                        |   |                                       |          |
|       | -2476.871               | -2476.871             | -2476.871    |              |                                        |   |                                       |          |
| - 1   | -249.385                | -249.385              | -249.385     |              |                                        |   |                                       | i        |
| lt-   | -214.150                | -214.150              | -214.150     |              |                                        |   |                                       |          |
|       | 249.385                 | 249.385               | 249.385      |              |                                        |   |                                       |          |
| - 11  | 214.150                 | 214.150               | 214.150      |              |                                        |   |                                       |          |
| - II  | 0.0070000               | 3000.0 0.             | 0.35000002   | Ο.           |                                        |   |                                       |          |
|       | 0.00910227              | 2.107117              | 0.           |              |                                        |   |                                       |          |
| ll.   | 0.00643250              | -1.450202             | Ο.           |              |                                        |   |                                       | ļ        |
| ll.   | 0.01392962              | 3.135643              | 0.           |              |                                        |   |                                       | i        |
| - 11  | 0.00921523              | -2.196007             | 0            |              |                                        |   |                                       | ·        |
| 1     | 0.00397039              | 0.882848              | -24.376      |              |                                        |   |                                       |          |
| - 11  | 0.00290907              | -0.761222             | -42.472      |              |                                        |   |                                       | ļ        |
| l II  | 0.00486571              | 0.785968              | 333.192      |              |                                        |   |                                       |          |
| 1     | 0.00356697              | -1.217928             | 107.534      |              |                                        |   |                                       | <u> </u> |
| l l   | 0.00557                 | 0.00443 0.            |              |              |                                        |   |                                       |          |
| -     | 3955.340                | 3955.340              | 3955.340     |              |                                        |   |                                       |          |
| i ii  | 2153.502                | 2153.502              | 2153.502     |              |                                        |   |                                       |          |
|       | -3955.340               | -3955.340             | -3955.340    | <del> </del> |                                        |   |                                       |          |
| H     | -2153.502               | -2153.502             | -2153.502    |              |                                        | • |                                       |          |
| H     | -344.163                | -344.163              | -344.163     |              |                                        |   |                                       | Į.       |
| J.    | -277.325                | -277.325              | -277.325     |              |                                        |   |                                       | i        |
| .     | 344.163                 | 344.163               | 344.163      |              | <del></del>                            |   |                                       |          |
|       | 277.325                 | 277.325               | 277.325      | ^            |                                        |   |                                       |          |
| 11    | 0.0075000<br>0.01009041 | 3000.0 0.<br>1.829873 | 0.37500000   | Ο.           |                                        |   |                                       | l        |
| - 11  | 0.01009041              | 1.829873<br>-2.137043 | 0.<br>0.     |              | ·                                      |   |                                       | !        |
| -     | 0.00553457              | 2.713595              | <u> </u>     |              |                                        |   |                                       |          |
| ll ll | 0.00786311              | -3.213076             | 0.<br>0.     |              |                                        |   |                                       |          |
| II.   | 0.00786311              | 0.664128              | -30.539      |              |                                        |   |                                       | 1        |
| - 11  | 0.00244423              | -1.100342             | -44.019      |              |                                        |   |                                       |          |
| - 11  | 0.00244423              |                       | 346.891      |              |                                        |   |                                       |          |
| il.   | 0.00316689              |                       | 138.269      |              |                                        |   |                                       | }        |
| {     | 0.00580                 | 0.00420 0.            |              |              |                                        |   |                                       | ļ        |
|       | 4279.611                | 4279.611              | 4279.611     |              |                                        |   |                                       |          |
| 11-   | 1697.816                | 1697.816              | 1697.816     | <del></del>  |                                        |   |                                       |          |
| 3     | -4279.611               | -4279.611             | -4279.611    |              |                                        |   |                                       | !        |
| 3     | - 1697 . 816            | - 1697.816            | - 1697 . 816 |              |                                        |   |                                       | İ        |
| 8     | -415.627                | -415.627              | -415.627     |              |                                        |   |                                       | l        |
|       | -330.092                | -330.092              | -330.092     |              |                                        |   |                                       |          |
| Š     | 415.627                 | 415.627               | 415.627      |              |                                        |   | •                                     | l        |
| *∥    | 330.092                 | 330.092               | 330.092      |              |                                        |   |                                       | ļ        |
| il.   |                         |                       | <del></del>  |              |                                        | • |                                       | · .      |

| - []  |             |            |             |              | •        |                                         |
|-------|-------------|------------|-------------|--------------|----------|-----------------------------------------|
| - []  | 0.0080000   | 3000.0 0.  | 0.3999998   | Ο.           |          |                                         |
| -     |             |            |             | Ο.           | ,        |                                         |
| Ш     | 0.01091351  | 1.443146   | 0.          |              |          |                                         |
| ∥     | 0.00430234  | -2.783468  | <u> </u>    |              |          |                                         |
| Ш     | 0.01660745  | 2.083194   | 0.          |              |          |                                         |
| - 11  | 0.00600657  | -4.203108  | Ο.          |              |          |                                         |
| - 11  | 0.00462985  | 0.418429   | -31.346     |              |          |                                         |
| - 11  | 0.00181020  | -1.429996  | -39.696     |              |          |                                         |
| - 11  | 0.00538744  | 0.439092   | 337.311     |              |          |                                         |
| - ((  | 0.00205247  | -1.635786  | 153.740     |              |          |                                         |
| - 11  |             | 0.00406 0. |             |              |          |                                         |
| - 11  | 4533.342    | 4533.342   | 4533.342    |              |          |                                         |
| -   - | 1142.081    | 1142.081   | 1142.081    |              |          |                                         |
| Ш     | -4533.342   | -4533.342  | -4533.342   |              |          |                                         |
| - 11  |             |            |             |              |          |                                         |
| Ш     | -1142.081   | -1142.081  | -1142.081   |              |          |                                         |
| ⊪     | -456.473    | -456.473   | -456.473    |              |          |                                         |
| H     | -367.082    | -367.082   | -367.082    |              |          |                                         |
|       | 456.473     | 456.473    | 456.473     |              |          |                                         |
| il    | 367.082     | 367.082    | 367.082     | _            |          |                                         |
| II.   | 0.0085000   | 3000.0 0.  | 0.42499997  | 0.           | <u> </u> |                                         |
|       | 0.01151239  | 0.933283   | Ο.          |              |          |                                         |
|       | 0.00276260  | -3.361895  | 0.          |              |          |                                         |
| 1     | 0.01745490  | 1.283871   | Ο.          |              |          |                                         |
| 1     | 0.00367693  | -5.094281  | 0.          |              |          |                                         |
|       | 0.00478028  | 0.188024   | -28.039     |              |          |                                         |
|       | 0.00102460  | -1.699786  | -30.042     |              |          |                                         |
| - 11  | 0.00559961  | 0.373410   | 303.359     |              |          |                                         |
| -     | 0.00121220  | -1.757033  | 122.662     |              |          |                                         |
| ⊪     |             | 0.00399 0. |             |              |          |                                         |
| - 11  | 4700.685    | 4700.685   | 4700.685    |              |          |                                         |
| - 11  | 500.570     | 500.570    | 500.570     |              |          |                                         |
| -11   | -4700.685   | -4700.685  | -4700.685   |              |          |                                         |
| -#-   |             |            |             |              |          |                                         |
| - 11  | -500.570    | -500.570   | -500.570    |              |          |                                         |
| - 11  | -486.439    | -486.439   | -486.439    |              | ·        |                                         |
| - 11  | -391.224    | -391.224   | -391.224    |              |          |                                         |
| -     | 486.439     | 486.439    | 486.439     |              |          |                                         |
| 1     | 391.224     | 391.224    | 391.224     | _            |          |                                         |
| ∥     | 0.0090000   | 3000.0 0.  | 0.44999995  | 0.           |          |                                         |
|       | 0.01182965  | 0.323692   | ٥.          |              |          |                                         |
| 1     | 0.00095765  | -3.839703  | <u>o.</u> . |              |          |                                         |
|       | 0.01786993  | 0.357336   | ٥.          |              |          |                                         |
|       | 0.00093820  | -5.834202  | 0.          |              |          |                                         |
| - []  | 0.00482235  | -0.017608  | -26.379     |              |          |                                         |
|       | 0.00012429  | -1.889258  | -20.318     |              |          |                                         |
|       | 0.00571392  | 0.049673   | 273.049     |              |          |                                         |
|       | 0.00025909  | -2.078763  | 54.773      |              |          |                                         |
| - [[  | 0.00604     | 0.00396 0. |             |              |          |                                         |
| 11    | 4752.210    | 4752.210   | 4752.210    |              |          |                                         |
|       | -236.771    | -236.771   | -236.771    |              |          |                                         |
| 1     | -4752.210   | -4752.210  | -4752.210   |              |          |                                         |
| H     | 236.771     | 236.771    | 236.771     |              |          |                                         |
| - [[  | -533.046    | -533.046   | -533.046    |              |          |                                         |
| 11-   | -409.142    | -409.142   | -409.142    |              |          | *************************************** |
|       | 533.046     | 533.046    | 533.046     |              |          |                                         |
| II.   | 409.142     | 409.142    | 409.142     |              |          |                                         |
| -     | 0.0095000   | 3000.0 0.  | 0.47499993  | ٥.           |          |                                         |
| -   - | 0.0095000   | -0.335259  | 0.47499993  | <del></del>  |          |                                         |
| 3     | -0.00105731 | -4.202069  | 0.<br>0.    |              |          |                                         |
| .   . |             |            |             |              |          |                                         |
| g     | 0.01779190  | -0.688640  | 0.          |              |          |                                         |
| 테     | -0.00212807 | -6.402137  | <u> </u>    | <del> </del> |          |                                         |
| ğ     | 0.00476121  | -0.231893  | -29.947     |              | ,        |                                         |
| ξ     | -0.00085390 | -2.015496  | -13.594     |              |          |                                         |
|       | 0.00564388  | -0.304323  | 264.154     |              | •        |                                         |
| - 11  |             |            |             |              |          |                                         |

| 11   | <i>j</i>                  | •••                           |                              |                                       | 1     |                                       |                                                   | , |         |
|------|---------------------------|-------------------------------|------------------------------|---------------------------------------|-------|---------------------------------------|---------------------------------------------------|---|---------|
|      | ,                         |                               |                              |                                       | ,     |                                       |                                                   |   |         |
| -    | -0.00086808               | -2.410120                     | -25.258                      |                                       |       |                                       |                                                   |   |         |
| .    | 0.00606                   | 0.00394 0.                    |                              |                                       |       |                                       |                                                   |   | ļ.      |
| 208  | 4659.599                  | 4659.599                      | 4659.599                     | <del> </del>                          |       |                                       |                                                   |   |         |
| œij  | - 1075.227<br>- 4659.599  | - 1075 . 227<br>- 4659 . 599  | - 1075 . 227<br>- 4659 . 599 |                                       |       |                                       |                                                   |   |         |
| - }  | 1075.227                  | 1075.227                      | 1075.227                     |                                       |       |                                       |                                                   |   |         |
| - 1  | -602.613                  | -602.613                      | -602.613                     |                                       |       |                                       |                                                   |   |         |
| - 11 | -421.136                  | -421.136                      | -421.136                     |                                       |       |                                       |                                                   |   |         |
| - 11 | 602.613                   | 602.613                       | 602.613                      |                                       |       |                                       |                                                   |   | ]       |
|      | 421.136                   | 421.136                       | 421.136                      |                                       |       |                                       |                                                   |   |         |
| - 11 | 0.0100000                 | 3000.0 0.                     | 0.49999992                   | 0.                                    |       |                                       |                                                   |   |         |
|      | 0.01149099                |                               | 0.                           |                                       |       |                                       |                                                   |   | į       |
| ┈    | -0.00322667<br>0.01716310 |                               | 0.<br>0.                     |                                       |       |                                       |                                                   |   | i       |
|      | -0.00543095               |                               | 0.<br>0.                     |                                       |       |                                       |                                                   |   | l l     |
|      | 0.00358282                |                               | -36.265                      |                                       |       | ·····                                 |                                                   |   |         |
|      | -0.00188405               |                               | -8.360                       |                                       | 1 - L |                                       |                                                   |   | į       |
| - [[ | 0.00545011                |                               | 253.132                      |                                       | •     |                                       |                                                   |   | j       |
|      | -0.00212024               |                               | - 102 . 125                  |                                       |       |                                       |                                                   |   |         |
| I    | 0.00609                   | 0.00391 0.                    |                              |                                       |       | •                                     |                                                   |   |         |
| I    | 4407.801<br>-1988.320     | 4407.801<br>-1988.320         | 4407.801<br>-1988.320        |                                       |       |                                       |                                                   |   | :       |
| Н    | -4407.801                 | -4407.801                     | -4407.801                    |                                       |       |                                       |                                                   |   |         |
|      | 1988.320                  | 1988.320                      | 1988.320                     |                                       |       |                                       |                                                   |   |         |
| H    | -677.563                  | -677.563                      | -677.563                     |                                       |       |                                       |                                                   |   | ]       |
| - 11 | -419.970                  | -419.970                      | -419.970                     |                                       |       |                                       |                                                   |   | Į.      |
|      | 677.563                   | 677.563                       | 677.563                      |                                       |       |                                       | <del>,, , , , , , , , , , , , , , , , , , ,</del> |   |         |
| - 11 | 419.970                   | 419.970<br>LONGER BUT STOP LI | 419.970                      |                                       |       |                                       |                                                   |   |         |
|      | GOIPOI PLOI PILE          | LUNGER BUT STOP LI            | SITING HERE                  |                                       |       |                                       |                                                   |   |         |
| - 11 |                           |                               |                              |                                       |       |                                       |                                                   |   | ·       |
| - 11 | <del></del>               |                               |                              |                                       |       |                                       |                                                   |   |         |
| ∦    |                           |                               |                              |                                       |       |                                       |                                                   |   | 1       |
| - 11 |                           |                               |                              |                                       |       | •                                     |                                                   |   | Į.      |
|      |                           |                               |                              |                                       |       |                                       |                                                   |   | <u></u> |
|      |                           |                               |                              |                                       |       |                                       |                                                   | * |         |
|      |                           |                               |                              |                                       |       |                                       |                                                   |   | Į.      |
|      |                           |                               |                              |                                       |       |                                       |                                                   |   |         |
|      |                           |                               |                              |                                       |       |                                       |                                                   |   |         |
|      |                           |                               | •                            | •                                     |       |                                       |                                                   |   | ļ       |
| - 11 |                           |                               |                              |                                       |       |                                       |                                                   |   |         |
| - 11 | ····-                     | ·                             | <del></del>                  | · · · · · · · · · · · · · · · · · · · |       |                                       |                                                   |   |         |
| H    |                           |                               |                              |                                       | •     |                                       |                                                   |   |         |
|      |                           |                               |                              |                                       |       |                                       |                                                   |   |         |
|      |                           |                               |                              |                                       |       | · · · · · · · · · · · · · · · · · · · |                                                   |   |         |
|      |                           |                               |                              |                                       |       |                                       |                                                   |   |         |
| - 1  |                           |                               |                              |                                       |       |                                       |                                                   |   | 1       |
| - 1  |                           |                               |                              |                                       |       | •                                     |                                                   |   | j       |
| - #  |                           |                               |                              |                                       |       |                                       |                                                   |   |         |
|      |                           |                               |                              |                                       |       |                                       |                                                   |   | į.      |
|      |                           |                               |                              |                                       | •     |                                       |                                                   |   | l       |
| - 11 |                           |                               |                              |                                       |       |                                       |                                                   |   | 10      |

\_\_\_\_\_

## 7.2 COMPUTED RESULTS

For the plotted results that are presented, the following computing strategy was used for constant speed running.

 $\Delta T = 50$  microseconds

Number of time integration points = 10,240Time frame =  $10,240 \times 50 \times 10^{-6} = 0.512$  second.

Figure 55 shows the TETRA computed displacement-time history at the middle of the rotor (point 38) in the vertical direction corresponding to a sudden 100 gm-in. fan unbalance at a constant 12,000 rpm speed. The number of computed values were decimated so that 1,024 points are shown and the time increment between points is equal to 50 x  $10^{-5}$  seconds. The 12,000 rpm speed corresponds to super critical speed operation relative to a rotor dominated mode computed at 9,908 rpm for the total system. Overshoot is clearly in evidence for the transient response shown in Figure 55. The Fast Fourier Transform of this time history response that is shown in Figure 56 indicates that four modes are contributing to the response. The peak at 200 Hz (12,000 rpm) is associated with the driving force. The VAST predicted mode shapes for the total system sketched in Figure 57 show that the modes at 3617 rpm, 9908 rpm, 13,983 rpm, and 26,473 rpm should be responsive at the middle of the rotor for fan unbalance. This indicates that TETRA has correctly synthesized the modal and physical data to predict the time transient response for the total system. Figure 58 shows the displacement-time history at the middle of the rotor in the vertical direction corresponding to a sudden 100 gm-in. fan unbalance at 9908 rpm critical speed operation. In this case, there is no overshoot and the transient response builds up to the steady-state level. This response behavior is characteristic of operation at a critical speed.

The results presented in Figures 55 and 58 do not include gyroscopic stiffening. Figure 59 shows the off-resonant response in two planes at the fan that reflects the effects of gyroscopic stiffening at both the fan and turbine. Figure 60 shows orbit plots of the data presented in Figure 59. Inspection of Figure 60 shows that the initial response is a noncircular

Demonstrator Model - 100 gm-in. Sudden Unbalance at the Fan at 12,000 rpm.



Figure 56. Demonstrator Model - 100 gm-in. Sudden Unbalance at the Fan at 12,000 rpm.



Figure 57. Total System - Rotor Mode Shapes.



Figure 58. Demonstrator Model - 100 gm-in. Sudden Unbalance at the Fan at 9908 rpm.



Figure 59. Fan Response in Two Planes for NASA Demonstrator Model with Gyro 100 gm-in. Sudden Fan Unbalance at 3000 rpm.



Figure 60. Orbit Plots at the Fan for NASA Demonstrator Model with Gyro 100 gm-in. Sudden Fan Unbalance at 3000 rpm.

whirl. This noncircular whirl transitions into a circular whirl after steadystate conditions are reached. Figures 61 through 66 show response plots at
the fan and case that include both the effects of gyroscopic stiffening and
the rub load path. Figures 67 through 70 show the steady-state frequency
response for the total system with and without gyroscopic stiffening at the
fan and the turbine locations. Comparison of the time response, once steadystate conditions have been reached, with the frequency response shows good
agreement.

Figures 71 through 76 show the results of analyses for a 2,000 rpm/sec accel rate that reflects use of the TETRA restart option. The restart option allows the utilization of the results obtained from a previous analysis to continue the analysis out to future time without the introduction of pseudo transients. For several different times (those for which output was printed) the TETRA program writes to a restart file data including values for each of the generalized coordinates for the current time step, for one time step earlier, and for two time steps earlier. The user chooses one of the times for which output was printed on the original run (usually the last such time) as the restart time for the new run. The data for that time from the restart file is then utilized to provide the initial data needed to continue the analysis. The process can be repeated any number of times.

The computing strategy used to generate the response data shown in Figures 71 through 76 was as follows. The maximum speed for the accel was selected as 5,000 rpm so as to encompass the two gyro stiffened critical speeds located at 3292 rpm and 3624 rpm for steady-state operation. Modal Q-factor values of 15 were used for each of the casing subsystem modes and the rotor subsystem modes were undamped. Physical damping for the connecting springs based on a Q-factor equal to 15 and a 60.4 Hz frequency, corresponding to the 3624 rpm mode, was used.

The analysis was accompanished with three restart segments for the following cases.

- a. Large fan-case radial clearance (200 mils)
- b. Small fan-case radial clearance (10 mils)



Figure 61. Response in the Vertical Direction at the Case and Fan Rotor for the NASA Demonstrator Model for 5000 Gm-In. Sudden Fan Unbalance at 3000 RPM (No Rub).



Figure 62. Response in the Vertical Direction at the Case and Fan Rotor for the NASA Demonstrator Model for 5000 Gm-In. Sudden Fan Unbalance at 3000 RPM (With Rub).

Shown to time 0.05 second. Radial displacement dead band exceeds the fan rotor-case relative displacement.



Figure 63. Rotor and Case Orbit Plot for the NASA Demonstrator Model for 5000 Gm-In. Sudden Fan Unbalance at 3000 RPM (No Rub).

Shown to time 0.05 second. 10 mil radial displacement dead band and  $1 \times 10^6$  lb/in. rub spring at the fan rotor-case.



Figure 64. Rotor and Case Orbit Plot for the NASA Demonstrator Model for 5000 Gm-In. Sudden Fan Unbalance at 3000 RPM (With Rub).

Shown to time 0.512 second. Radial displacement dead band exceeds the fan rotor-case relative displacement.



Figure 65. Response in the Vertical Direction at the Case and Fan Rotor for the NASA Demonstrator Model for 5000 Gm-In.

Sudden Fan Unbalance at 3624 RPM (No Rub).

Shown to time 0.512 second. 10 mil radial displacement dead band and 1 x  $10^6$  lb/in. rub spring at the fan rotor-case.



Figure 66. Response in the Vertical Direction at the Case and Fan Rotor for the NASA Demonstrator Model for 5000 Gm-In. Sudden Fan Unbalance at 3624 RPM (With Rub).



Figure 67. NASA Demonstrator - Steady-State Frequency Response, 100 gm-in. Fan (No Gyro).



Figure 68. NASA Demonstrator - Steady-State Frequency Responce, 100 gm-in. Fan (No Gyro).



Figure 69. NASA Demonstrator - Steady-State Frequency Response, 100 gm-in. Fan (Gyro at Fan and Turbine).



Figure 70. NASA Demonstrator - Steady-State Frequency Response, 100 gm-in. Fan (Gyro at Fan and Turbine).



Figure 71. Response in the Vertical Direction of the Case and Fan Rotor for the NASA Demonstrator Model for 1000 to 3000 RPM Accel Segment. Radial Displacement Dead Band Exceeds the Fan-Case Relative Displacement (No Rub).



Figure 72. Response in the Vertical Direction at the Case and Fan Rotor for the NASA Demonstrator Model for 3000 to 5000 RPM Accel Segment. Radial Displacement Dead Band Exceeds the Fan-Case Relative Displacement (No Rub).



Figure 73. Response in the Vertical Direction at the Case and Fan Rotor for NASA Demonstrator Model for 1000 to 3000 RPM Accel Segment. 10 Mil Radial Displacement Dead Band and 1 x 106 Lb/In. Rub Spring at the Fan Rotor-Case (With Rub).

ORIGINAL PAGE IS OF POOR QUALITY



Figure 74. Response in the Vertical Direction at the Case and Fan Rotor for the NASA Demonstrator Model for 3000 to 5000 RPM Accel Segment. 10 Mil Radial Displacement Dead Band and 1 x 10<sup>6</sup> Lb/In. Rub Spring at the Fan Rotor-Case (With Rub).



Figure 75. Force Exerted by the Forward Frame/Bearing (Spring 3) on the Rotor at Point 5 in the Vertical Direction for the NASA Demonstrator Model for 3000 to 5000 RPM Accel Segment. Radial Displacement Dead Band Exceeds the Fan Rotor-Case Relative Displacement (No Rub).



Figure 76. Force Exerted by the Forward Frame/Bearing (Spring 3) on the Rotor at Point 5 in the Vertical Direction for the NASA Demonstrator Model for 3000 to 5000 RPM Accel Segment. 10 Mil Radial Displacement Dead Band and 1 x 10<sup>6</sup> Lb/In. Rub Spring at the Fan Rotor Case (With Rub).

Initial constant speed runs were made for 0.520 second of simulated time with the rotor speed set at 1,000 rpm and with 100 gm-in. fan unbalance to establish steady-state conditions. For the 2,000 rpm/sec accel rate, the time required to accel from 1,000 to 5,000 rpm is

$$\frac{(5000-1000)\text{rpm}}{2000 \text{ rpm/sec}} = 2 \text{ seconds.}$$

With an integration time step of  $\Delta T$  = 50 microseconds, the number of time steps required is equal to

$$\frac{2 \text{ seconds}}{50 \times 10^{-6}} = \frac{40,000 \text{ time steps.}}{\text{time step}}$$

For both cases a and b, two restart segments of 20,000 integration points each were used to compute the response for the 2 second accel from 1,000 to 5,000 rpm. For plotting purposes, the computed data were decimated so that each of the restart segment plots represents 2,000 points with a time increment between points equal to  $50 \times 10^{-5}$  seconds. This means that there are at least  $(60/5000) \times 1/(50 \times 10^{-5}) = 24$  plotted points per cycle at the highest rotor speed (5,000 rpm). Although the plots are labeled 0 to 1.0 second for the accel from 1,000 to 3,000 rpm, the 0 time actually corresponds to 0.52 second. At a time of 0.6 second (labeled as 0.6 - 0.52 = 0.08 second), a large unbalance increment of 5000 gm-in. is added to represent sudden unbalance. It will be noted that the apparent critical speeds for the large clearance case (i.e., no rub) occur at higher rotor speeds than the steady-state values. The 3580 rpm speed corresponds to the 3292 rpm speed and the 3960 rpm corresponds to the 3624 rpm speed. The shifting of the peak response speeds is caused by the accel rate and this phenomenon is discussed in the literature. (1) The fan rub which is present for the small clearance case causes a stiffening effect that shifts the peak response to a higher speed.

<sup>(1)</sup> Vibration During Acceleration Through a Critical Speed, F.M. Lewis: Trans. ASME, Vol. 54, pp253-261, 1932.